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The classical staggered scheme for the incompressible Navier—Stokes equations
is generalized from Cartesian grids to general boundary-fitted structured grids in
three dimensions. The resulting discretization is coordinate-invariant. The unknowns
are the pressure and the contravariant volume flux components. The grid can be
strongly nonuniform and nonorthogonal. The smoothness properties of the coordinate
mapping are carefully taken into account. As a result, the accuracy on rough grids
is found to be at least as good as for typical finite element and nonstaggered finite
volume schemes. © 1999 Academic Press
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1. INTRODUCTION

We think nobody will dispute that in Cartesian coordinates, computation of incompre:
ible flows is best performed on the staggered grid proposed by Harlow and Welch [33]
combination with the pressure correction method [3, 6, 13-15, 22, 33, 36, 81, 83] an effic
and accurate method to compute instationary flows is obtained. The method is also stra
forward, provided spatial discretization precedes introduction of pressure correction, so
no artificial pressure boundary condition is required.

However, there is no such consensus when the domain is not rectangular. We cann
complete in listing all possible approaches, and even less so in referring to the abun
literature. A first distinction may be made between structured and unstructured grids
structured grids the number of cells that share an interior vertex is fixed. For unstructt
grids there is no such restriction. Unstructured grids, which include finite element methc
will not be considered here. The general approach to handle complicated domains with s
tured grids isto use an unstructured decomposition of the domain into subdomains of sinr
shape, with a structured grid inside each subdomain. We will consider only the case of a
gle subdomain, with a structured grid constructed by a boundary-fitted coordinate mapp
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In general coordinates, accurate discretization of differential operators on staggered ¢
is generally considered to be much more complicated (if not impossible) than on nons
gered grids. As a consequence, nonstaggered (or colocated) discretization is much |
widespread for the Navier—Stokes equations than staggered discretization and preva
commercial codes. Anincomplete list of publications taking this route is [23, 25] (one-sid
discretization of diw and gradp); [1, 2, 9, 19, 20, 29, 35, 40, 45, 46, 51, 52, 59, 61, 62, 96
(using the pressure-weighted interpolation method of Rhie and Chow [61]); and [4, 10,
21, 34,43, 44,50, 49, 60, 63, 65, 64, 72, 77, 80] (employing artificial compressibility). B
forincompressible flows, a price has to be paid for the ease of handling general coordin
that nonstaggered discretization brings. In order to avoid spurious oscillations, regulari:
terms must be added to the continuity equation. These terms may falsify transient behav
make instationary computations more costly and complicated, or make extension to we
compressible flow difficult; or they are not suitable in the presence of strong body for
[29]. Furthermore, good coupling conditions at subdomain boundaries in domain decon
sition methods are harder to obtain. For these reasons, a relatively minor number of gre
have sought to generalize the staggered scheme from Cartesian to generalized coordi
Some publications in this direction are [16, 17, 37, 38, 41, 67-69, 7, 76], and by our grc
[5, 8,53-57, 71, 87, 92-95, 98-103].

We think that on the question of whether nonstaggered or staggered grids are prefet
the last word has not yet been said. Our purpose here is to show that the staggered sc
can be generalized from Cartesian to general coordinates while maintaining accuracy
on very nonuniform grids, provided the smoothness properties of the boundary-fitted c
dinate mapping are carefully taken into account. If this is not done or if too much smoothn
is implicitly assumed, the accuracy can become bad even on mildly nonsmooth grids.
experience has led many to think that on curvilinear grids, staggered discretization is in
ently less accurate than nonstaggered discretization, but we intend to show that this is nc

On nonstaggered grids it is convenient to discretize in physical space, and no refere
is made to the coordinate mapping, so that its smoothness properties do not come
play, and no serious degradation of accuracy is observed as the grid becomes less sir
Staggered discretization may also be carried out in physical space; this is done in [67-
We expect this method to behave satisfactory on nonsmooth grids, although this is
shown in [67—69]. But on staggered grids, discretization in physical space puts a he
demand on geometric insight and pictorial representation, which is why we have develo
an algebraic formulation. Furthermore, we think it desirable to bring out explicitly the ro
of the smoothness properties of the coordinate mapping. We will use tensor notation
derive a coordinate-invariant discretization in general coordinates. This approach cal
extended to governing equations (in other fields) that contain tensors of rank higher t
two. Discretization of such laws in physical space on staggered grids would seem hard tc

The methods using staggered grids in general coordinates proposed in the other put
tions mentioned above are likely to suffer from inaccuracy when the grid is nonsmooth.
[17, 41] and our own earlier work a coordinate-invariant form of the governing equations
discretized, with explicit use of Christoffel symbols, making it necessary that the coordin
mapping is twice continuously differentiable. Also in [37, 38] a set of invariant equations
discretized, but Christoffel symbols are avoided by the introduction in the viscous term:
the vorticity as an auxiliary variable. Nevertheless, second derivatives of the mapping :
occur. Furthermore, the viscosity needs to be constant, precluding application to turbu
flows. In [16] finite volume integrals of an invariant formulation are simplified by assumir
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the base vectors to be locally constant; this is likely to be inaccurate when the coordit
mapping is not smooth. In [7, 76] the scheme is not coordinate-invariant, and Christo
symbols do not occur. Cartesian velocity components are used in the momentum equa
and contravariant components are employed in the continuity equation. This method we
seem to require less grid smoothness than the methods discussed before. The method
directly applicable to nonstationary flows, because of approximations made in the pres
correction equation. Objections have been raised against the use of staggered Cart
velocity components, because if the gridlines turn over an angle°of80n a 90 bend for
example, these components are parallel to the control volume faces instead of perpendic
as in the original MAC scheme of [33]. But in [76] it is shown that the method continues
work well under these circumstances.

In the present work a time-accurate coordinate-invariant staggered scheme is prese
for which the mapping merely needs to be piecewise differentiable, allowing abrupt chan
of mesh size. If the mesh size jumps, the local discretization error is of first order for vert
centered and of zeroth order (which makes the scheme inconsistent in the maximum n
for cell-centered schemes for the convection-diffusion equation [48]. This has made s
believe that grids need to be smooth for accurate results. But this is not so. In [58, 48, 88,
it is shown that the global discretization error is second order on strongly nonuniform gri
These results for the convection-diffusion equation may be expected to carry over to
Navier—Stokes equations. This is fortunate, because it allows us to switch abruptly fi
a fine mesh in thin boundary or shear layers to a coarse mesh outside. For such g
in [24, 66, 90] it is shown that the accuracy is uniform in the Reynolds number, for t
convection-diffusion equation.

We will start by discussing as far as necessary geometric aspects of coordinate tran
mations. Next, a staggered discretization will be presented for the incompressible Nav
Stokes equations, which is accurate on general nonuniform grids. Finally, numerical ex|
iments will be presented.

2. CELL VOLUMES AND CELL FACE AREAS IN BOUNDARY-FITTED GRIDS

Let the physical domaii®2 be topologically equivalent to the unit culé& In G we
have Cartesian coordinatés= (1, £2, £3) and a uniform gridsy, consisting of grid points
located at;, j = (j1. Jo. J3),

Gh={& & =juAE ju=01...,1/A" « = 1,2 3}, (2.2)

where YA&* e N. Greek indices are used exclusively to refer to coordinate directions, a
vice versa. Unless stated otherwise, summation is implied exclusively over pairs of ec
Greek sub- and superscripts in terms and products. This summation convention doe:
apply to (2.1).

Itis assumed that a boundary-fitted coordinate system is generated numerically, givi
one-to-one mapping

Xj =Xj(€), XeQ & €Gn. (2.2)

In order to obtain accurate discretizations we have to be precise about how the map
(2.2) is extended to all a2 andG. In order to allow rough grids for reasons given in the
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preceding section, the mapping (2.2) is extended by trilinear interpolatiorf2 | be the
grid cell with vertices

Xj+(er+er+es)s Xj+(e—er+es) Xjt(e+e—es) Xj+(—er+er+e3)>

1 1 1
e]_= (570’0>7e2= (09 §7o>7e3= <0507 5)

Since the vertices have integer indices, this implies fhas fractional. In the following,
Xj will be a cell centerx; ., will be a cell face center; e, e, (8 #a) Will be a cell
edge center, and; ¢ 1e,+e, Will be a cell vertex. The image a®; in G is a rectangular
hexahedron calle@;; Gj andQ; are called cells.

Let &y be some point irG;. Then trilinear interpolation insid; gives the following
relation betweex andg:

(2.3)

X = Xo+ Co(§% —&§) + Cro(E — &) (62 — £8) + coa(8% — £3) (3 - &§)
Foa(8% — &) (61 — £8) + cuza(£t — £3) (62— £2) (5 — &5). (2.4)

The coefficients andc follow from the requirement that (2.2) holds in the vertice$gf
and need not be determined here. They differ per cell. In this way we obtain a piecev
trilinear mapping

X = X(&), X € Q, e G. (2.5)

This mapping is assumed to be boundary-fitted, which means that the bouselé&yhe
image ofdG. In other words, on every part 6£2 we havet® = constant for some.

It follows from (2.4) that the edges of the c@l} are straight. Consider a face @f with
£3 = constant. In this face the mapping (2.4) becomes, chojrig the corresponding
face ofG; so that we have® =&,

X =Xo+C (&1 — &) + Ca(€2 — £8) + co(81 — &0) (82— &8), (2.6)

with coefficientsxo andc in general different from those in (2.4), sin€g is changed.
With &1 = constant 0€2 = constant, Eq. (2.6) describes straight lines, so that the cell fa
contains two families of straight lines and is therefore a doubly ruled surface. This me
thata 2 is approximated by doubly ruled patches.

Taking£® = constant ang”? = constanty # 8, x =Xx(§) gives us a curvilineag-coordi-
nate system iif2. It is assumed that= x(§) is one-to-one, i.e., we have for the Jacobian

X X X X
J=q—rt=— | =—= X — 0. 2.7
{ae} 81 (asz * 8&3> 7 @7
Furthermore, it is assumed that #feoordinate system is right-handed, i.e.,

J>0. (2.8)

Figure 2.1 gives a picture of a (in this case piecewise bilinear) boundary-fitted coordin
mapping in two dimensions, showing the piecewise ligeanordinates. We will not discuss
the two-dimensional case; it can be easily derived from the three-dimensional case.
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= xl _>§1

FIG. 2.1. Mapping of physical domain onto computational domain.

We will now discuss accurate and efficient computation of cell volumes and cell fa
areas and normals. This is of obvious importance for finite volume discretization, whet
staggered or colocated. This elementary topic has of course been discussed before; s
excellent review of discretization in physical space by Vinokur [85] and references quo
there. But the topic still warrants attention, because many authors define a cell face to co
of two plane triangles. This is less satisfactory than the doubly ruled surface used here.
resulting formulae are not more economical, and a face can be divided into triangles in
ways, and adjacent cells have to fit, which complicates grid generation; furthermore,
normal is ill-defined. Therefore we feel that the approach in which the mapping£) is
extended from the vertices to the whole domain by multilinear interpolation, or equivalen
in which cell faces are defined as doubly ruled surfaces, is to be preferred; the mor
because the resulting expressions for areas and volumes are cheap, as will be seen.

We start with the cell volume. Figure 2.2 depicts a three-dimensional cell and
&-space, with numbered vertices. We have for the cell volume

|Qj|=/dQ=/Jd§1d§2d$3. (2.9)

Q) Qj

Let us choosé&, in (2.4) in the center of the cell i®. Then the ranges of integration in this
triple integral are§§ — 3A&Y, £§ + $AE”), @ =1, 2, 3, with Ag” the length of the edges
in G. The following change of variables is convenient,

1 .
£ =& + 5A8%s"  (no summation (2.10)
3 3
0 7 6 7
5 [}
[}
]
3 5 : 8
1.2
| S
1 JpRSot 3
— i 1
A > g
I 1 4

FIG. 2.2. Three-dimensional cell. Its image @& is a rectangular hexahedron.
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so that (2.9) becomes
1 111
Q| = éAglAnggS///J dstds?ds’. (2.11)
S1-1-1

According to (2.4) we have

X
9eL = Cp + 0125 + di3s® + dipas?s’,
X 1 3 31
8752 = Cp + d21S™ + dp3S° + dp3:S°S™, (2.12)
X
8_$3 =C3+ d31$l + d32$2 + d3125152,
where
1 1 1
dip = §A$20121 diz = §A$3C13, di2z = ZA§2A530123’
1 1 1
doy = §A$1C12, O3 = §A§3C23, 31 = ZA§3A§1C123, (2.13)
1 1 L
d3; = EA51C13, d32 = EAEZCZB, ds12= ZASlAéZClB‘

Because of symmetry (which is wify was chosen in the center), terms that contain od
powers ofs* do not contribute. Neglecting these terms, Eq. (2.7) gives

J ~ €1 (Ca x C3) + s's’cy - (dp1 x dag) + S%S%di, - (¢ X d32)

+ 5383d13 - (dy3 x C3) + 518132825353d123- (dy31 x d312), (214)

where the symbol- indicates that terms have been neglected. Becauskgheectors are
parallel, the last term is zero. Integration gives, using (2.13),

Tas2 a3 2 11
[2j] = AE"AEAS {Cl'(CZ X C3) + éAE A&7cy - (C12 X C13)
2 2.2 2 3.:3
+§A$ AE°C12- (C2 X Cp3) + §A$ AE°C13- (C3 X C3) ¢ (2.15)

The mapping = x(&) is given in the cell vertices only. We want to rewrite (2.15) in terms
of this information. Expressed in the loatoordinates, defined in (2.10), we have

X = Xg + b, ¥ + by25's? + by3sts® + bpss?s® + byoasts?s?, (2.16)

with (no summation)
1 1
ba = éAgaCav botﬁ = ZAgaAsﬂCaﬂa
(2.17)
1 1, c2,e3
b12z = éAE AE“AE Cos.
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Requiringx=xm, m=1, 2, ..., 8 (see Fig. 2.2) gives the following system of equations,
Ay =r, (2.18)
with y = (by, bz, bs, biz, bia, baa, b12s, Xo) 7. 1 = (X1, X2, ..., Xg) T, and

-1 -1-1 1 1 1-1
-1 1 -1-1 1-1 1
1 1-1 1-1-1-1
1-1-1-1-1 1 1

P PR P PR

A=l_1-1 1 1-1-1 1 (2.19)
-1 1 1 -1 -1 1 -1
1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 -11
The columns ofA are orthogonal. Premultiplication of (2.18) By gives
1
y=-ATr (2.20)
8
so that
by = é(X3478 — X1256), b, = é(X2367_ X1458),
1 1
bs = - (Xse78 — X1234), D12 = —(X1357 — X2469),
8 8
. . (2.21)
b1z = é(X1278 — X3456), b3 = é(X1467 — Xo359),
1
bios = §(X2457 — X1369),
where
Xjkmn = Xj + Xk + Xm + Xn. (2.22)

Substitution of (2.17) in (2.15) gives

8
|2j| = 8by - (b2 x bg) + é{bl - (b12 x by3) + b1z - (b2 x bp3) 4 b13- (b23 x b3)}. (2.23)

This formula is exact. Before giving a more efficient expression we first give a formula 1
the area of a cell face multiplied by its outward unit normal.

Consider the cell face 1234 (cf. Fig. 2.2). In this cell face the coordinate mapping car
written in the form given by (2.6). The vector normal to the face in a pointthe positive
£3-direction with length equal to the area of the parallelogram spanned by two infinitesir
displacement vectormx;, anddxy is given bydx ) x dX), so that the average normal
vector with length equal to the area of the face 1432 (which we call the cell face vector
given by

S1432 = /ndF: /dX(l)XdX(Z). (224)

1432 1432
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The indices are put in parentheses to emphasize that no components are intended. Intr:
ing s* defined by (2.10) gives

dX o) = 8; dé*  (no summation (2.25)
with
X aX
—— =1+ do8%, — = Cy+ dyiSt, 2.26
51 1 + dio 0E2 2 + 021 ( )

whered;, andd,; are defined by (2.13). Substitution in (2.24) gives

S1432= —Ag AE? // 51 852dslds,2 AETAE®C, X Cp. (2.27)

The vectorsc; andc, are easily determined as follows. The transformation (2.6) can |
rewritten as

1 1 1
X =Xo+ 5Aglclsl + éAgzczsz + ZAglAszclzslsz. (2.28)

Requiringx=xm, m=1, 2, 3, 4, gives a system of equations that is easily solved in th
same way as (2.18). The result is

C1 = - (X34 — X12), C = (X23 — X14), (2.29)

1 1
2AEL 2AE2

wherex;m = Xj + Xm. Usinga x a= 0 this gives the efficient form
1
Stz = 5 (Xa — X2) X (X3 = X0), (2.30)

which is identical to the formula for a plane quadrilateral. This equivalence holds only 1
doubly ruled surfaces with straight edges. The general formula for a cell face vector is

1
Smnpg = E(Xn —Xg) X (Xp — Xm) (2.31)
assuming the cell vertices are numbered such that the diagonatparmedng and that the
vector has a positive component in a direction of increastn(ef. Fig. 2.2).
It may be shown that
Smnpg// Mo, (2.32)

with ng the normal in the cell face centgg. It is easily seen from (2.6) that

1
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LetT'; be the surface of the cedt;. Sincel'; is closed we must have

/ndF =0, (2.34)

L)

with n the unit outward normal. This is called the geometric identity. For uniform flow t
be an exact solution of discretization schemes it is necessary that the geometric identi
satisfied exactly. Since our cell faces are smaodthdefined unambiguously, and it is easily
shown that

/ndF = Snpg=0. (2.35)

where summation takes place over the cell faces constitiiing/e see that the geometric
identity is satisfied.

We can now write down a more economical formula for the cell volume. The cell fal
vectors are needed in the discretization. It would be nice if they could be reused to com,
cell face volumes. It would not be unexpected if the volume is related to face area tin
face distance. The vectobg (defined in (2.21)) connects face centers. We rewrite (2.2
as

8
12| = §{b1 - (b2 x bz + bz x by3) + by - (b3 x by + b3 x byo)
+ b3 - (by x bz + b1z x bp3)}. (2.36)

After some manipulation we find

1
by x bz = ?z(xzs X Xg7 4 X67 X X58 + X14 X X23 + X58 X X14), (2.37)
and
1
b1 x b1z = 3—2(X17 X Xog + X35 X X17 + X28 X X46 + X46 X X35), (2.38)
so that
1
b1 - (b2 x bz + b2 x b13) = ébl - (S1265 + S4379)- (2.39)

Not unexpectedly, this is the average area of two opposing faces times their distance div
by 8. The other two terms in (2.36) can be handled in the same way, resulting in the effic
formula

1
12| = é{bl - (S1265+ Su378) + D2 - (S1584+ S2672) + D3 - (S1432+ Sg765)}.  (2.40)

Sincesmnpq is Nneeded anyway, as noted before, this is the most efficient formula for t
cell volume. Equation (2.40) consists of parts that can be reused for adjacent volumes.
example b, = é(x3478— X1256), andXaa7g can be used both i®; and Q2. The same
holds forss37g, and the other vectors in (2.40) can also be used more than once. We h
not seen (2.40) published elsewhere.
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3. GEOMETRIC QUANTITIES AND THEIR SMOOTHNESS PROPERTIES

For the reasons given in Section 1 we will work in the transformed doBaim derive
a staggered discretization. Physical laws in general coordinates are best formulate
coordinate-invariant form using tensor analysis. As a preparation for this we introduce a
fundamental geometric quantities related to the coordinate magping€) introduced in
Section 2, and take a careful look at their smoothness properties. The summation convel
applies.

The covariant base vectoag,, are defined by

X 5 axp
= or  a, =_——,
a&” 9E*

&) (3.1)
with afa) the Cartesiarx?-component of the vectaa,,. Becausex =x(&) is piecewise
multilinear,a,) is piecewise continuous and does not exist everywhereafpwe have
Eq. (2.12). We will needx, only in cell centers and cell face centers. For mnemoni
convenience we indicate these points by subscfiptd, R, F, etc., withC for center,N

for north, R for rear,F for front, etc. Hence, with the vertex numbering of Fig. 2.2,

8
1 1
Xc = é?xma Xp = 204+ Xa + X5 + Xg), 3.2)
etc. It follows from (2.33) thakxy, ... are in the doubly ruled cell faces. For economy we
need to expresd,, in the pointsC, N, ... in terms of cell vertex locations, ..., Xgin an
efficient way. InC we have in (2.16)! =s?=s®=0; in N we have(st, s?, s*) = (0, 0, 1),
etc. After some algebra we find from (2.12), (2.13), (2.17), and (2.21)

anc = (Xe — Xw)/A&™ aoc = (Xr — Xp)/AE2, azc = (XN — Xs)/AE3,

1 1
aow = @(XZG — X15), azw = T«‘?(XSG — X12), 63

(X48 — X15), apF = (Xs8 — X14),

1
INE 2AE3

1 1
s = Tsl(xm — X12), ao)s = ng(XB — X14),

etc., where we have used the notatiof = Xm + Xn. At a cell faceé® = constanta, is
discontinuous and will not be used, tayf), 8 # « is continuous at such a face.
The contravariant base vectors are defined by

dE*
(@) _ o (a)

aY =V or a; = .
d B oxp

(3.4)
We have
a - ap =8, (3.5)

with &5 the Kronecker delta. Solving (3.5) gives

1 .
a@ — ﬁ(a(ﬁ) xay), a B,y cyclic, (3.6)
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where,/g is the common designation in tensor analysis for the Jacabagfined in (2.7),
ie.,

Ji=aw - (ap xay),  a B,y cyclic (3.7)

From the smoothness propertiesagf it follows that,/g anda® are discontinuous at cell
faces. But,/ga® turns out to be continuous at cell faces of the tgpe= constant. After
some algebra we find that in the cell face centers whége” is continuous,/ga® equals
the corresponding cell face vector times a scaling factor:

1 1
(v3a®)y e = AEPAEWE (VEa®) (= AEIAEISRF
1 (3.8)
(vaa®) s = AgleEZsN*S'

4. STAGGERED REPRESENTATION OF THE VELOCITY FIELD

We want to generalize the classical staggered Marker-and-Cell (MAC) scheme propc
by Harlow and Welch [33] from Cartesian to general coordinates. This means that we w
to compute the pressure in cell centers, and normal velocity components in cell face cen
It follows from (3.8) that the contravariant base veagy is perpendicular to faces of the
type&® = constant, so at first sight the contravariant velocity comporigfifglefined as

U*=u-a® 4.2

would seem to be suitable for representing the velocity fieBlut we saw in the preceding
section thata® is discontinuous at cell faces. As a consequence, the usk déads

to bad accuracy on rough grids. But as we sgga® is continuous at cell faces where
&* = constant. Therefore the following coordinate-invariant staggered representation of
velocity fieldu will be employed (from now on denoting: by Xj e, €tc.):

Vite, = (V@& U);,, (N0 summation (4.2)
From (3.8) it follows that we may also write
Vite, = (5 U)jie, /AEPAEY, a, B, y cyclic. (4.3)

This shows thaV/* Ag? A£Y approximates the volume flux through the cell face. Therefor
V< will be called the volume flux components. Comparing (4.2) and (4.3) and using (2.:
we have the efficient formula (cf. Fig. 2.2)

1
(VB = 5067 = Xa) X (Xg = Xo)/AEZAE?, 4.4)
etc.
We will need to approximaté® andu not only in the cell face centers, but in other points

as well. The general relation betwe®f andu is (using (3.5))

Ve = /ga® - u, U =aeV/J/a. (4.5)

Finding u requires evaluation o¥“ in points other than its proper grid nodes. Becaus
of lack of smoothness of the geometric quantities, evaluatioviofn other points than
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its proper grid nodes and evaluationwheed to be done carefully. A certain tedium is
unavoidable. We impose the following accuracy requirement on formulas for defiiting
in other points than its proper grid nodes.e, : constant velocity fields must be invariant
under transformation t&*-representation and back. More preciselyuifs given, and
V{e, Is computed with (4.5), and® is determined in another point by some interpolatior
recipe, andi is computed in this point with (4.5), then the origingk recovered exactly in
the special case that= constant. Furthermore, in the case of the identity mappiag,
we will have multilinear interpolation. We have found these accuracy requirements to
essential for maintaining accuracy on rough grids.

In the cell centers; we define

1

Vi =5 (Vie, + Vite)

(@a(a))j — _{( a(“)) + (\/ga(“))jﬁu} (no summation  (4.7)

1 J/ga® x /ga® } .
A« , , B, v cyclic. 4.8
(\@@ )>i { | a, B,y cy (4.8)

(no summatioi (4.6)

@a(l) . (\/ga(@ X ﬂa@))

We show that the above invariance requirement is met. Suppesenstant. Then (4.6),
(4.5), and (4.7) give

Vi = (@a<“))j -u. (4.9)

Recomputingsj from V{* gives, using (4.5) and (4.8),

uj = (;ga(‘”) (vVga®) u=u, (4.10)

which we wanted to show.
In the cell face centers; ., we define for8 # o,

1
B _ B B B B
VJ+ew - (VJ +e; T VJ e T Vj +2e,4+¢; T Vj +2€a7eﬁ)’ (4.11)

1
(\/ga(ﬁ))preuEZ{(x/@a@)Heﬁ+(J@a(ﬂ))j-eﬁ+(@a(ﬁ))uzeﬁeﬂ+(\/§a(ﬁ))j+za,—eﬁ}
(4.12)
(no summation), antB)//9)|+e, is related ta,/ga?) |, by replacingj by j +e, in

(4.8). In a similar way as before it is easily seen that the invariance requirement is satisf
In the cell edge centers ,¢, +¢,, B # o We define (no summation)

o 1 a
VJ+e,,+eﬁ = 2(V1+ex + VJ+eu+ze/3)
o 1 o ¢
(voa' ))j+ea+e/a = E{(x/@a( )>j+ea + (Ve ))i+ea+2€ﬁ}’
? (4.13)

Vﬁ

B B
Vi jtes + Vj +2e,+6€5 )’

J+ey+eg = 2(

1
(«/@a(ﬂ))j+q,+eﬂ = E{(\/ga(ﬁ))j-re,g + (\/ga(ﬁ))j-s-zeu-s-eﬁ}’
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and fory #«, 8

VJ);ewe,g = g(vy + V1V+ey + VJ —e+2e, T VJ+ey+2ea + V] —e,+2ey

+ VJ +e,+2¢5 + Viy—ey+26a+2eﬁ + ij+ey+2ex+2eﬂ)’

g{( V") o +(vEa?”), . + (VI . e (414)
) ) )
+ (\/_ay )]+ey+2e, (\/@ay )jfey+29,; + (\/@ay )j+ey+2e,9
+(vo

a(y))] —e,+2e,+2¢e5 + (“/ga(y))j+ey+2e,x+2eﬁ}'

(ﬂa(y)) irete =

As before,(a,)//0)j+e,+e; IS related to(,/ga”’) e, +e, by replacingj by j +e, + e

in (4.8). Again, it is easily seen that the invariance requirement is satisfied.
Furthermoreyp is required at the cell vertice§ ;e +e,+e,- The way to proceed is clear

from the preceding cases. We defilae# 8, @ # v, B # y, ho summation)

o 1 o o o o
Viierere = Z(VHeX + Viie 126, T Vite 42e, + Vj+m+2eﬁ+2ey)7 (4.15)
(VO8“) | e rere = *{(f a”), o + (VIA) | 0 i2e,
+(V82”) o 26, T (VOEY) 1 100,100} (4.16)

and (aw)/./9) is related to(,/ga®) in X e+e+e; DY (4.8) with appropriate grid point
indices.

5. COORDINATE-INVARIANT DISCRETIZATION
OF THE NAVIER-STOKES EQUATIONS

Finite volume integration of the continuity equation div= 0 over2; gives

=/divud§2=/u ndF_Z(u s)|J+e“

Qj T (5 1)

3
=Y AEPAETVETE, a8,y cyclic,
a=1

using the conventiom,j( =uj — Ux. For robustness, the discretization scheme should
coordinate invariant. This is the case for (5.1), because it contains a contravariant repre
tation of the velocity field.

A straightforward way to proceed would be to discretize the momentum equations writ
in coordinate invariant form, using tensor analysis. However, in this formulation the s
called Christoffel symbols occur. These involve second derivatives of the mappirgs).
Because the mapping is piecewise bilinear, the Christoffel symbols are “infinite” at ¢
edges. Approximation of the Christoffel symbols by straightforward finite differences giv
reasonable results on smooth grids only. This is perhaps what has led to a widesp
belief that staggered discretization is inaccurate in general coordinates. In order to a
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the difficulty with the Christoffel symbols we first transform only the independent variable
obtaining a form that is not coordinate-invariant, which is discretized and used as a step
stone to arrive at a coordinate-invariant discretization.

The derivative of some quantity transforms according to

d 0
9 _ éﬂ) 4 (5.2)
ax aEB”
Using the identity
gea (VOB) =0, (5.3)
this can be rewritten as
do _ 1 ®g
— = 5.4
The momentum equations can be written as
U0 ey = —vpy 202 (5.5)
ot 9xe = TVPT e '
where
aut | au”
e T o
e = % + % . (5.6)

Applying (5.4), Eqg. (5.5) can be rewritten as
au 1 9 1
N@W, p) =5+ oo V) + Vp— —— oo ©veP)=0. (57
p N el vp g ot (f ) (5.7)

This equation is integrated over the shifted finite voluge, depictedin Fig. 5.1. Treating
each term successively, we obtain

ou

Qj-ﬁ—el

FIG.5.1. Shifted finite volumeR; ., .



NONSMOOTH STAGGERED GRIDS 347

1 o i o 142 4s3
7E(uv )dQ = / e (uV®) delde2 des. (5.9)

Qe Gjte
We have

9 é:J'Zerl/Z E133,+1/2
l11 = /@(uvl)dgldédg‘?: / /(uvl)ufldszdg?*, (5.10)

. 2 3
J+ep E12*1/2 513*1/2

where the fact thatV! is continuous irG| ¢, has been used. This integral is approximate
by the midpoint rule:

l11 = AE2AE3 VY2 (5.11)

This is approximated further by using

1
Vi = E(Vl +Viie)- (5.12)
Similarly,
g _
l1p = / @(“Vz) dg d&?de® = AgT ARV TaT R (5.13)
Gjie
This is further approximated using
2 1 2
Vitere = E (Vl e, TV +2e1+e2) (5.14)
Analogously,
8 .
o= [ SHUVOde e = adacwVOlR'E, (619
Gjte
3 1
UVY)jre+e = Z(Uj+el + Ujte 42e;) (Vj+83 +V, +2e1+e3) (5.16)

Integration of the pressure term is done as

e |

Qjte

(5.17)

where we have used smoothnes¥ @ The termV pj¢, is expressed in terms of surround-
ing nodal values in the following way. We write, using smoothnesg pf

Xij+2e;

2 o / Vp-dX = Vpjie Cy,  Cay =X (5.18)

by = plj
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Similarly,

Xj+t2e  Xj+2e1+2e
j+2 j+2 2 ~
be = plj 50 + Pliioe o0 = / + / Vp-dX = Vpjie-Co, (5.19)

Xj—2ep Xj+2e) —2ep

— y|it2e j+2e1+2e;
Co = X|j—2e2 + X|j+2e1—2e2' (5-20)

Using the third direction we obtain similarly

j+2e3 jt+2e1+2e3 ~

b3 = plj 2e; + Plji26-26, = VPj+e * C3)s (5.21)
j+2 j+2e1+2
Co = XI| oe + XI{ 1o 20 (5.22)

We now have three equations expressiigin terms of surrounding nodal values, without
any assumption about the smoothness of the coordinate mapping. The system is solve
V p by defining

C(a) = Cp) X Cy/c, C= Ca - (C(z) X C(3)). (523)
Then the solution of the above three equationsvfgris

ap (B)
— = cbg. 5.24
Ix o« DB ( )

Integration of the viscous term oveX; ¢, gives three contributions. The first is
d
l15= / 9 («/@a;(sl)ve(ﬁ)) d&'dg? de?
1

j+ep

Ej22+1/2 $133+1/2

ji+1
= / / (Vaag’ve?) Hf de?des. (5.25)

§y 2 E5172
In (5.25),,/Ga" is constant. We write
~ j+2
l1s = AE%AE%(V/Gag ve?) [T (5.26)
The second contribution is

1 3
Ej1+1 E13+1/2
j2+1/2

l16= / / (vaay ve?) |27 detde®. (5.27)
S1'11 E1'33—1/2

In (5.27),¢§a(2> is piecewise constant. We make the following approximation,

16 = AF* A3 (V/Ga)7 vel) [ 1372 (5.28)
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where we define

=

('\/ga(Z))j+eli82 = é{(\/ga(z)) e T (\/ga(Z))jJrZel:teg}' (5.29)
The third contribution is 17, which is handled just likéye,

EJ11+1 sj22+1/2
_ 3. AP [1atL/2 41 4s2
|17: / / (\/ﬁaﬁ VE ) ja—1/2 dg d%—
&, e

= AtAE?(/gay ve?) Hi:fz (5.30)

where

1
(x/ga(s>)j+elie3 = E{(\/@a(g))jieg + (\/ga(g))HZelies}' (5.31)

In |15, 116, andl 17, €# has to be approximated, requiring discretizations of derivatives
u. We start withl ;5 and write, using (5.2),

KR Ry YR
() ~(s2) -

In a cell-center we are not hampered by nonsmoothness of the mapgir¢t), and the
following straightforward approximation can be used:

W\ 1, _
(32) =3 G uls 559

j a=1

The same procedure cannot be followed Ifgy and 1,7, because we are at a cell edges
where the geometric quantities are discontinuous. Instead, we proceed in a similar we
for V p. An approximation foou®/dx” in X;_e,+e,, for example, is derived by writing (no
summation)

Xj+ep+ex+ey
_ aitetete, o ~ o
b, = U]} e re-0 = / Vu® - dX = VU{ ¢ 1, * Co)s
Xj+e+ep—ey

j+eitete, (5.34)
C(V) Ex|j+el+eg—ey7 Y = 12 3

This system of three equations fgu“ is solved in similar manner as the system Yop.
We definec® by (5.23), takingc,) from (5.34), and find

au®
<axﬁ), =cb,. (5.35)

In cfgy) values ofu in cell face centers, cell edge centers and cell vertices occur; these
expanded in terms of* by means of (4.5), (4.8), and (4.12)—(4.16).
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The momentum equation (5.7) is integrated also over shifted finite vol@mes and
Qj1e, and discretized in a completely similar manner. We may consider the resulting fir
volume discretization of (5.7), briefly denoted as

/ N(u, p)d2 =0 (5.36)

Qjtey

with the integral approximated in the way indicated above, as semi-discretized evolut
equations fowu at the cell face centers (by semi-discretization we mean discretization
space but notintime). This is not what we want, because we wish to generalize the stagg
scheme of Harlow and Welch [33] from Cartesian to general grids, which implies that
want evolution equations for the volume flux components at the cell face centers. Us
(4.5), this is achieved by replacing (5.36) by

(\/ﬁa(‘)‘))jJreu . / Nu, ppdQ2=0  (nosummation (5.37)

Qjrey

with the integral approximated in the way described above. This gives for the various te!
in N(u, p) the following results. From (5.8) and (4.5) it follows that

au

(vVaa®), e, - / it dQ = |Qjie,|dVie /dt  (nosummation  (5.38)

Qjtey

which is precisely what we want. Furthermore.

(vBa®) . 111 = AEPAE (GaY) | - (V[T (5.39)

The equivalent of the second order central scheme for the convection term is obtained i
expressl in terms ofV¢ in the way described in Section 4. The first order upwind schem
is obtained if we shift the flux in the usual way; for examplevff> 0 then(uVv?); is
replaced byuV?l);_e . After this shiftu is expressed in terms <. A way to implement
second order upwind-biased flux-limited schemes is to substitute in (5.39) componentw
assuming\/jl > 0, in the notation of [79]:

1
Uj =Uj_e + Elﬁ(rj)(uﬁel —Uj_e),
rj=(Uj—e —Uj-3e)/(Ujre, — Ujg).

When solving, the nonlinear term can lag behind, so that defect correction is applied to
first order upwind scheme, which is common practice for flux-limited schemes.

There is no need to discuss the remaining terms. In this way a coordinate-invariant
cretization is obtained, that in the case of the identity mappiagt is reduced to the
classical Cartesian staggered discretization of Harlow and Welch [33]. Furthermore,
discretization error is zero far andV p constant, regardless of roughness and nonortho
onality of the grid. It would be too tedious to show this here, but verification by numeric
experiment is easy.
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One may wonder how it is possible that a coordinate-invariant discretization has been
tained without encountering Christoffel symbols. This may, to a certain extent, be elucide
as follows. The Christoffel symbols are defined by

{ * }Ea@ 9% (5.40)
By 134

In (5.39), for example, ifi is expressed in terms &f“, products ofa® in one point and
a(s) in neighbouring points are hidden, similar to what one would get by discretizing (5.4
(assuming differentiability of,). Furthermore, contra- and covariant base vectors al
implicitly present inl 15, because,, in (5.18), (5.20), and (5.22) is related &g,,, and
c@ in (5.23) toa®. Another way of looking at our circumvention of Christoffel symbols
is to note that finite volume integration precedes transformation to invariant form, so t
integrals of the Christoffel symbols are required, removing the derivative in (5.40).

The spatial discretization is completed by implementing the boundary conditions. T
presents no particular problem and will not be discussed here.

6. SOLUTION METHODS

Putting all unknows/j’, . (no summation) in some order in an algebraic veatand all
unknownsp; in an algebraic vectop, the semi-discretized incompressible Navier—Stoke
equations go over in a differential-algebraic system of the structure
du
at + N +Gp= f(t),
t (6.1)
Du = g(t).

HereN is a nonlinear algebraic operator arising from the discretization of the inertia a
viscous termsG and D are linear algebraic operators corresponding to the gradient a
divergence operators, arfdandg are known terms, arising from the boundary conditions

Temporal discretization methods carry over directly from the Cartesian to the gene
coordinates case and result in systems of the following general form, assuming a con:
timestepr and a superscript to indicate time levet” =nz,

A(Un) + ,L,Gpn—l/2 — rn,

(6.2)
Du" = g(t",
wherer" is known from previous time steps and the boundary conditions. For expli
methods, the nonlinear algebraic operaias the identity. For example, the second ordel
Adams—Bashforth method applied to (6.1) gives

ut U+ %r{smu“—l) N +G@Ep" - p" ) %r{:%f (" — "),
(6.3)

Du" = g(t").

In order to avoid an overdetermined systeftandp" ! must be determined simultaneously.
The solution fou" is not affected if we defing"~%2 = 3 p"~1 — 1 p"~2 which resultsin a
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system of the form (6.2). The formulation (6.2) brings out more clearly than (6.3) the f
that the pressure acts as a Lagrangian multiplier guaranteeing satisfaction of the contir
equation. As a second example, application oféthreethod to (6.1) gives

u" —u" T 0TNUM + A=) TNUYH + 1 GpY2 = ot + (1 —0) F ("D
(6.4)
Du" = g(t")

which is again of the form (6.2).

For computing time-dependent solutions of (6.2), pressure correction is the methoc
choice. With the pressure-correction method, (6.2) is not solved as it stands, but fir
predictionu* is made that does not satisfy the continuity equation. Then a correction
computed involving the pressure such that continuity is satisfied. The advantage of th
thatu" and p"~1/2 are solved for separately. The pressure correction method is given by

AU*) + tGp" Y2 =" (6.5)
u" —ut 4+ TG(p" Y2 - p"¥2) =0 (6.6)
Du" = g(t"). (6.7)

Equation (6.5) more or less amounts to solving discretized convection-diffusion equati
for the predicted velocity components. Negt,~'/? is computed by applyind to (6.6)
and using (6.7), resulting in

DGsp = %(DU* —gt"), p"YE=p"245p (6.8)

After §p has been computed) follows from (6.6). Becaus®G is a discrete Laplacian,
(6.8) is frequently called the pressure Poisson equation. Note that no boundary condit
need to be invoked fodp, which is fortunate, because no such conditions are given |
general. The boundary conditions have already been incorporated@® g, andr"; the
operatorDG works exclusively on pressure values in grid points in the interior of th
domain. The issue of boundary conditions for the pressure Poisson equation (which
not arise with the approach followed here) is discussed extensively in [26—28].

Even if the method is explictA= 1), we still have to solve an implicit system fép.
This is a consequence of the differential-algebraic nature of (6.1). By eliminatignitas
easily seen that in the explicit case the pressure correction method (6.5)—(6.7) is equiv:
to (6.2), and this remains true f"~%/? is neglected in (6.5) and (6.6). But in the implicit
case this does not hold, and inclusion of a sufficiently accurate first gueg8f&F in
(6.5), such ap"~%?, seems to be necessary to obtain full temporal accuraay™oFhis
may make it necessary to compute the initial pressure at the startingnstep), to be
substituted forp~%2. This may be done as follows. Application bfto (6.1) gives

% + DN(u(t)) + DGp(t) = Df (1). (6.9)
After puttingt = 0 and solvingp(0) from (6.9), we putp~%? = p(0) in (6.5).

In the Cartesian case, convergence of the method is studied theoretically in [36]

references quoted there. The pressure correction method has been formulated and st
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in [3, 13-15, 22, 33, 36, 6, 81, 83]. Indications are that the temporal accuratyiothe
same as the order of accuracy of the underlying time stepping method, but that the acct
of p"~1/2is O(7), irrespective of the temporal discretization used. If one desires, a press
field with improved accuracy can be obtained aftehas been computed, by using (6.9)
for t =t" to find p" with the same order of temporal accuracyuds

For stability of (6.5)—(6.7) it seems necessary that (6.5) is stable. Since (6.5) is v
close to a system of convection-diffusion equationsMférandV?, application of Fourier
analysis to show von Neumann stability is relatively easy [91]. It is conjectured, suppor
by numerical evidence, that stability of (6.5) is sufficient for stability of (6.5)—(6.7).

In the explicit case, on orthogonal grids, the bulk of the computing time goes to solvi
§p from (6.8), so it pays to do this efficiently. On uniform grids in orthogonal coordinate
fast Poisson solvers based on fast Fourier transformation and/or cyclic reduction ar
widespread use. A survey of these methods is given in [78]. On general grids these met
are not applicable. In general, the matrix of (6.8) is not symmetric, and when the co
dinates are strongly non-orthogonal it is notlamatrix. But multigrid [31, 89, 97] and
preconditioned Krylov subspace methods [70, 86, 87, 97] work fine. For robustness,
smoother or preconditioner must be able to cope with high cell aspect ratios. This,
the influence of mixed derivatives is modeled by the rotated anisotropic diffusion equat
of Chapter 7 in [89], where efficient and robust smoothers for this problem are identifi
these may also be expected to be effective preconditioners for Krylov subspace mett
These methods are of line relaxation or incomplete LU type, namely damped altert
ing Jacobi or zebra relaxation, alternating line Gauss—Seidel, and various ILU varia
for details see [89]. We found that on general grids the discretization that we preser
is sufficiently complicated to make the work required to update the matrin (6.5)
not neglible, though still smaller than the work required to compute the pressure corr
tion.

Inthe implicit case, (6.5) also has to be solved iteratively. The nonlinear character is ta
care of by some outer iteration or a prediction of nonlinear coefficients by extrapolati
from previous time levels, so for the present discus#lde assumed linear. With central
discretization of convection and a practical Reynolds nun#boeiill not be anM-matrix,
but forz small enough the main diagonal is enhanced sufficiently by the time derivate to |
iterative methods in business. Otherwise, the system may be preconditioned by a sufficie
upwind-biased scheme (defect correction). In nonorthogonal coordinates mixed derivat
can be significant, which causes ADI and other fractional step methods to loose muc
their lustre. Again, Krylov subspace and multigrid methods may be used. The convecti
diffusion equation can serve as a testbed for identifying robust and efficient smoothers
preconditioners. In [89] the same methods as before are found to be eligible. Navier—St
applications are shown in [89, 86, 87, 97].

7. APPLICATIONS AND EXTENSIONS

In order to illustrate that the generalized coordinates staggered discretization descr
before is at least as accurate as the discretization methods that are mostly used at pt
in codes to compute Navier—Stokes solutions in complicated domains, namely coloc:
finite volume methods using Rhie—Chow interpolation [61] and finite element methods,
approximate a simple exact solution on arough grid. We start with a simple two-dimensic
example, so that the coordinate mapping satisfies x* (&1, £2) (« =1, 2), x3=£3. The
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FIG. 7.1. Grid for Poiseuille flow.

exact solution is Poiseuille flow:
ut=x?(1-x%, u’=0, p=-2Relx!, Re=1.

The grid, shown in Fig. 7.1, is chosen rough deliberately. Figures 7.2—7.4 give stream-li
and isobars for the staggered discretization, a finite-element code Qsird?, elements
(quadrilaterals with bilinear basis functions for the velocity and constant basis functic
for the pressure) and a commercial code using colocated discretization with Rhie—Cl
interpolation. Figure 7.5 gives an even wilder grid, meant to investigate the effect of sud
refinement and derefinement. Results are shown in Figs. 7.6 and 7.7. We do not have re
for the colocated code for this case. The streamlines should be straight and the isc
straight and equally spaced. Clearly, the staggered discretization is more accurate tha
other two methods. Figure 7.8 shows a grid that is also distorted i&tdrection. The
exact solution is chosen as before. Figure 7.9 shows the intersections (isobars) of con
pressure surfaces with several planés= constant anc® = constant (thex}-axis points
in the longitudinal direction). These lines should be straight and uniformly spaced. We
that this is the case to a satisfactory extent, given the extreme roughness of the grid.
This illustrates that staggered schemes are not inherently inaccurate on general g
On the contrary, they can be quite accurate, provided the smoothness properties o
boundary-fitted coordinate mapping are carefully taken into account. This can be don
the way described above. Examples involving physically more interesting flows are refer

FIG. 7.2. Streamlines and isobars for staggered discretization.
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/

FIG. 7.3. Streamlines and isobars for finite element method.

to below. Satisfactory results were obtained on more or less smooth grids using an e
version of our code making explicit use of Christoffel symbols. With the version describ
above results are at least as good.

Extension of the present approach to the case of nonstationary compressible flow i
scribed in [5], resulting in a unified method for compressible and incompressible flow, w
approximately Mach-independent accuracy and efficiency. For the development of s
Mach-uniform methods, staggered schemes have an advantage over colocated sch
that we will now briefly discuss. The disadvantage of greater difficulty in handling geom
rically complicated domains remains, of course, a difficulty that is not unsurmountable,
we have shown above. The linlt | 0 of the Euler and Navier—Stokes equations is singulz
[42, 47]. Classical methods to compute compressible flows break don|a® Measures
can be taken to decrease to a certain extent the lowest valiéarfwhich reasonable results
can be obtained [11, 30, 82, 84] (unkl =0.1), but these measures usually falsify tran-
sient behaviour and are therefore limited to stationary flowsMge0 cannot be reached. A

< <s

FIG. 7.4. Streamlines and isobars for colocated discretization.



FIG. 7.6. Streamlines and isobars for staggered discretization.
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FIG. 7.8. Three-dimensional grid for Poiseuille flow.
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method that tends to an established method for incompressible flots|a® obviously
does not break down for small Mach numbers. A way to obtain methods with Mach-unifo
accuracy and efficiency is therefore to generalize methods designed for the incompres
case to the compressible case. For the stationary Navier—Stokes equations this has
done with a colocated scheme in [18] and for a staggered scheme in [32, 39, 73—
Colocated schemes add, either implicitly or explicitly, an artificial regularizing term to tt
mass conservation equation; for an explicit expression of this term generated by the R
Chow velocity interpolation method [61], see [51]. Introduction of weak compressibilit
entails a small physical modification of the mass conservation equation, which may
dominated by the artificial regularizing term. This is not the case for staggered schen
which seems to be an advantage, especially for nonstationary flows.

Extension to turbulent flow is straightforward. Two-equation turbulence models, su
as thek — ¢ andk — w models, can be discretized on general staggered grids using |
principles outlined before [98—103]. Turbulence quantities sughasandw are located in
the same grid points as the pressure. For higher order accuracy while maintaining posit
of k andg, higher order upwind biased schemes with flux limiting can be extended to gene
staggered grids [99, 103].

8. CONCLUDING REMARKS

We have shown how the classical staggered scheme for the incompressible Nav
Stokes equations can be generalized from Cartesian to coordinate invariant form on gel
strongly nonuniform and nonorthogonal grids in such a way that the accuracy is at le
as good as a typical finite element method and a typical colocated scheme using R
Chow velocity interpolation. The accuracy is maintained when two-equation turbuler
modeling is included. Extension of the usual solution techniques to general structured g
is straightforward. Because on staggered grids no artificial regularization is needed for
mass conservation equation, accurate extension to weakly compressible instationary
is possible. The resulting scheme works satisfactorily fiddra-0to M > 1.
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