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The classical staggered scheme for the incompressible Navier–Stokes equations
is generalized from Cartesian grids to general boundary-fitted structured grids in
three dimensions. The resulting discretization is coordinate-invariant. The unknowns
are the pressure and the contravariant volume flux components. The grid can be
strongly nonuniform and nonorthogonal. The smoothness properties of the coordinate
mapping are carefully taken into account. As a result, the accuracy on rough grids
is found to be at least as good as for typical finite element and nonstaggered finite
volume schemes. c© 1999 Academic Press
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1. INTRODUCTION

We think nobody will dispute that in Cartesian coordinates, computation of incompress-
ible flows is best performed on the staggered grid proposed by Harlow and Welch [33]. In
combination with the pressure correction method [3, 6, 13–15, 22, 33, 36, 81, 83] an efficient
and accurate method to compute instationary flows is obtained. The method is also straight-
forward, provided spatial discretization precedes introduction of pressure correction, so that
no artificial pressure boundary condition is required.

However, there is no such consensus when the domain is not rectangular. We cannot be
complete in listing all possible approaches, and even less so in referring to the abundant
literature. A first distinction may be made between structured and unstructured grids. In
structured grids the number of cells that share an interior vertex is fixed. For unstructured
grids there is no such restriction. Unstructured grids, which include finite element methods,
will not be considered here. The general approach to handle complicated domains with struc-
tured grids is to use an unstructured decomposition of the domain into subdomains of simpler
shape, with a structured grid inside each subdomain. We will consider only the case of a sin-
gle subdomain, with a structured grid constructed by a boundary-fitted coordinate mapping.
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In general coordinates, accurate discretization of differential operators on staggered grids
is generally considered to be much more complicated (if not impossible) than on nonstag-
gered grids. As a consequence, nonstaggered (or colocated) discretization is much more
widespread for the Navier–Stokes equations than staggered discretization and prevails in
commercial codes. An incomplete list of publications taking this route is [23, 25] (one-sided
discretization of divu and gradp); [1, 2, 9, 19, 20, 29, 35, 40, 45, 46, 51, 52, 59, 61, 62, 96]
(using the pressure-weighted interpolation method of Rhie and Chow [61]); and [4, 10, 12,
21, 34, 43, 44, 50, 49, 60, 63, 65, 64, 72, 77, 80] (employing artificial compressibility). But
for incompressible flows, a price has to be paid for the ease of handling general coordinates
that nonstaggered discretization brings. In order to avoid spurious oscillations, regularizing
terms must be added to the continuity equation. These terms may falsify transient behaviour,
make instationary computations more costly and complicated, or make extension to weakly
compressible flow difficult; or they are not suitable in the presence of strong body forces
[29]. Furthermore, good coupling conditions at subdomain boundaries in domain decompo-
sition methods are harder to obtain. For these reasons, a relatively minor number of groups
have sought to generalize the staggered scheme from Cartesian to generalized coordinates.
Some publications in this direction are [16, 17, 37, 38, 41, 67–69, 7, 76], and by our group
[5, 8, 53–57, 71, 87, 92–95, 98–103].

We think that on the question of whether nonstaggered or staggered grids are preferable
the last word has not yet been said. Our purpose here is to show that the staggered scheme
can be generalized from Cartesian to general coordinates while maintaining accuracy even
on very nonuniform grids, provided the smoothness properties of the boundary-fitted coor-
dinate mapping are carefully taken into account. If this is not done or if too much smoothness
is implicitly assumed, the accuracy can become bad even on mildly nonsmooth grids. This
experience has led many to think that on curvilinear grids, staggered discretization is inher-
ently less accurate than nonstaggered discretization, but we intend to show that this is not so.

On nonstaggered grids it is convenient to discretize in physical space, and no reference
is made to the coordinate mapping, so that its smoothness properties do not come into
play, and no serious degradation of accuracy is observed as the grid becomes less smooth.
Staggered discretization may also be carried out in physical space; this is done in [67–69].
We expect this method to behave satisfactory on nonsmooth grids, although this is not
shown in [67–69]. But on staggered grids, discretization in physical space puts a heavy
demand on geometric insight and pictorial representation, which is why we have developed
an algebraic formulation. Furthermore, we think it desirable to bring out explicitly the role
of the smoothness properties of the coordinate mapping. We will use tensor notation and
derive a coordinate-invariant discretization in general coordinates. This approach can be
extended to governing equations (in other fields) that contain tensors of rank higher than
two. Discretization of such laws in physical space on staggered grids would seem hard to do.

The methods using staggered grids in general coordinates proposed in the other publica-
tions mentioned above are likely to suffer from inaccuracy when the grid is nonsmooth. In
[17, 41] and our own earlier work a coordinate-invariant form of the governing equations is
discretized, with explicit use of Christoffel symbols, making it necessary that the coordinate
mapping is twice continuously differentiable. Also in [37, 38] a set of invariant equations is
discretized, but Christoffel symbols are avoided by the introduction in the viscous terms of
the vorticity as an auxiliary variable. Nevertheless, second derivatives of the mapping still
occur. Furthermore, the viscosity needs to be constant, precluding application to turbulent
flows. In [16] finite volume integrals of an invariant formulation are simplified by assuming
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the base vectors to be locally constant; this is likely to be inaccurate when the coordinate
mapping is not smooth. In [7, 76] the scheme is not coordinate-invariant, and Christoffel
symbols do not occur. Cartesian velocity components are used in the momentum equations
and contravariant components are employed in the continuity equation. This method would
seem to require less grid smoothness than the methods discussed before. The method is not
directly applicable to nonstationary flows, because of approximations made in the pressure
correction equation. Objections have been raised against the use of staggered Cartesian
velocity components, because if the gridlines turn over an angle of 90◦, as in a 90◦ bend for
example, these components are parallel to the control volume faces instead of perpendicular,
as in the original MAC scheme of [33]. But in [76] it is shown that the method continues to
work well under these circumstances.

In the present work a time-accurate coordinate-invariant staggered scheme is presented
for which the mapping merely needs to be piecewise differentiable, allowing abrupt changes
of mesh size. If the mesh size jumps, the local discretization error is of first order for vertex-
centered and of zeroth order (which makes the scheme inconsistent in the maximum norm)
for cell-centered schemes for the convection-diffusion equation [48]. This has made some
believe that grids need to be smooth for accurate results. But this is not so. In [58, 48, 88, 90]
it is shown that the global discretization error is second order on strongly nonuniform grids.
These results for the convection-diffusion equation may be expected to carry over to the
Navier–Stokes equations. This is fortunate, because it allows us to switch abruptly from
a fine mesh in thin boundary or shear layers to a coarse mesh outside. For such grids,
in [24, 66, 90] it is shown that the accuracy is uniform in the Reynolds number, for the
convection-diffusion equation.

We will start by discussing as far as necessary geometric aspects of coordinate transfor-
mations. Next, a staggered discretization will be presented for the incompressible Navier–
Stokes equations, which is accurate on general nonuniform grids. Finally, numerical exper-
iments will be presented.

2. CELL VOLUMES AND CELL FACE AREAS IN BOUNDARY-FITTED GRIDS

Let the physical domainÄ be topologically equivalent to the unit cubeG. In Ḡ we
have Cartesian coordinatesξ= (ξ1, ξ2, ξ3) and a uniform gridGh consisting of grid points
located atξ j , j = ( j1, j2, j3),

Gh =
{
ξ j : ξαj = jα1ξ

α, jα = 0, 1, . . . ,1/1ξα, α = 1, 2, 3
}
, (2.1)

where 1/1ξα ∈N. Greek indices are used exclusively to refer to coordinate directions, and
vice versa. Unless stated otherwise, summation is implied exclusively over pairs of equal
Greek sub- and superscripts in terms and products. This summation convention does not
apply to (2.1).

It is assumed that a boundary-fitted coordinate system is generated numerically, giving a
one-to-one mapping

x j = x j (ξ j ), x ∈ Ǟ, ξ j ∈ Gh. (2.2)

In order to obtain accurate discretizations we have to be precise about how the mapping
(2.2) is extended to all of̄Ä andḠ. In order to allow rough grids for reasons given in the
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preceding section, the mapping (2.2) is extended by trilinear interpolation. LetÄ j be the
grid cell with vertices

x j±(e1+e2+e3), x j±(e1−e2+e3), x j±(e1+e2−e3), x j±(−e1+e2+e3),
(2.3)

e1 =
(

1

2
, 0, 0

)
, e2 =

(
0,

1

2
, 0

)
, e3 =

(
0, 0,

1

2

)
.

Since the vertices have integer indices, this implies thatjα is fractional. In the following,
x j will be a cell center,x j+eα will be a cell face center,xj+eα+eβ (β 6=α) will be a cell
edge center, andx j+e1+e2+e3 will be a cell vertex. The image ofÄ j in G is a rectangular
hexahedron calledG j ;G j andÄ j are called cells.

Let ξ0 be some point inG j . Then trilinear interpolation insideÄ j gives the following
relation betweenx andξ:

x = x0+ cα
(
ξα − ξα0

)+ c12
(
ξ1− ξ1

0

)(
ξ2− ξ2

0

)+ c23
(
ξ2− ξ2

0

)(
ξ3− ξ3

0

)
+ c13

(
ξ3− ξ3

0

)(
ξ1− ξ1

0

)+ c123
(
ξ1− ξ1

0

)(
ξ2− ξ2

0

)(
ξ3− ξ3

0

)
. (2.4)

The coefficientsx0 andc follow from the requirement that (2.2) holds in the vertices ofG j

and need not be determined here. They differ per cell. In this way we obtain a piecewise
trilinear mapping

x = x(ξ), x ∈ Ǟ, ξ ∈ Ḡ. (2.5)

This mapping is assumed to be boundary-fitted, which means that the boundary∂Ä is the
image of∂G. In other words, on every part of∂Ä we haveξα = constant for someα.

It follows from (2.4) that the edges of the cellÄ j are straight. Consider a face ofÄ j with
ξ3= constant. In this face the mapping (2.4) becomes, choosingξ0 in the corresponding
face ofG j so that we haveξ3= ξ3

0 ,

x = x0+ c1
(
ξ1− ξ1

0

)+ c2
(
ξ2− ξ2

0

)+ c12
(
ξ1− ξ1

0

)(
ξ2− ξ2

0

)
, (2.6)

with coefficientsx0 and c in general different from those in (2.4), sinceξ0 is changed.
With ξ1= constant orξ2= constant, Eq. (2.6) describes straight lines, so that the cell face
contains two families of straight lines and is therefore a doubly ruled surface. This means
that∂Ä is approximated by doubly ruled patches.

Takingξα = constant andξβ = constant,α 6=β, x= x(ξ) gives us a curvilinearξ-coordi-
nate system inÄ. It is assumed thatx= x(ξ) is one-to-one, i.e., we have for the Jacobian

J =
{
∂x
∂ξ

}
= ∂x
∂ξ1
·
(
∂x
∂ξ2
× ∂x
∂ξ3

)
6= 0. (2.7)

Furthermore, it is assumed that theξ-coordinate system is right-handed, i.e.,

J > 0. (2.8)

Figure 2.1 gives a picture of a (in this case piecewise bilinear) boundary-fitted coordinate
mapping in two dimensions, showing the piecewise linearξ-coordinates. We will not discuss
the two-dimensional case; it can be easily derived from the three-dimensional case.
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FIG. 2.1. Mapping of physical domain onto computational domain.

We will now discuss accurate and efficient computation of cell volumes and cell face
areas and normals. This is of obvious importance for finite volume discretization, whether
staggered or colocated. This elementary topic has of course been discussed before; see the
excellent review of discretization in physical space by Vinokur [85] and references quoted
there. But the topic still warrants attention, because many authors define a cell face to consist
of two plane triangles. This is less satisfactory than the doubly ruled surface used here. The
resulting formulae are not more economical, and a face can be divided into triangles in two
ways, and adjacent cells have to fit, which complicates grid generation; furthermore, the
normal is ill-defined. Therefore we feel that the approach in which the mappingx= x(ξ) is
extended from the vertices to the whole domain by multilinear interpolation, or equivalently,
in which cell faces are defined as doubly ruled surfaces, is to be preferred; the more so
because the resulting expressions for areas and volumes are cheap, as will be seen.

We start with the cell volume. Figure 2.2 depicts a three-dimensional cell inx- and
ξ-space, with numbered vertices. We have for the cell volume

|Ä j | =
∫
Ä j

dÄ =
∫
Ä j

J dξ1 dξ2 dξ3. (2.9)

Let us chooseξ0 in (2.4) in the center of the cell inG. Then the ranges of integration in this
triple integral are(ξα0 − 1

21ξ
α, ξα0 + 1

21ξ
α), α= 1, 2, 3, with1ξα the length of the edges

in G. The following change of variables is convenient,

ξα = ξα0 +
1

2
1ξαsα (no summation), (2.10)

FIG. 2.2. Three-dimensional cell. Its image inG is a rectangular hexahedron.
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so that (2.9) becomes

|Ä j | = 1

8
1ξ11ξ21ξ3

1∫
−1

1∫
−1

1∫
−1

J ds1 ds2 ds3. (2.11)

According to (2.4) we have

∂x
∂ξ1
= c1+ d12s

2+ d13s
3+ d123s

2s3,

∂x
∂ξ2
= c2+ d21s

1+ d23s
3+ d231s

3s1, (2.12)

∂x
∂ξ3
= c3+ d31s

1+ d32s
2+ d312s

1s2,

where

d12 = 1

2
1ξ2c12, d13 = 1

2
1ξ3c13, d123= 1

4
1ξ21ξ3c123,

d21 = 1

2
1ξ1c12, d23 = 1

2
1ξ3c23, d231= 1

4
1ξ31ξ1c123, (2.13)

d31 = 1

2
1ξ1c13, d32 = 1

2
1ξ2c23, d312= 1

4
1ξ11ξ2c123.

Because of symmetry (which is whyξ0 was chosen in the center), terms that contain odd
powers ofsα do not contribute. Neglecting these terms, Eq. (2.7) gives

J ∼ c1 · (c2× c3)+ s1s1c1 · (d21× d31)+ s2s2d12 · (c2× d32)

+ s3s3d13 · (d23× c3)+ s1s1s2s2s3s3d123 · (d231× d312), (2.14)

where the symbol∼ indicates that terms have been neglected. Because thedαβγ vectors are
parallel, the last term is zero. Integration gives, using (2.13),

|Ä j | = 1ξ11ξ21ξ3

{
c1 · (c2× c3)+ 2

3
1ξ11ξ1c1 · (c12× c13)

+ 2

3
1ξ21ξ2c12 · (c2× c23)+ 2

3
1ξ31ξ3c13 · (c23× c3)

}
. (2.15)

The mappingx= x(ξ) is given in the cell vertices only. We want to rewrite (2.15) in terms
of this information. Expressed in the locals-coordinates, defined in (2.10), we have

x = x0+ bαsα + b12s
1s2+ b13s

1s3+ b23s
2s3+ b123s

1s2s3, (2.16)

with (no summation)

bα = 1

2
1ξαcα, bαβ = 1

4
1ξα1ξβcαβ,

(2.17)

b123= 1

8
1ξ11ξ21ξ3c123.
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Requiringx= xm,m= 1, 2, . . . ,8 (see Fig. 2.2) gives the following system of equations,

Ay= r, (2.18)

with y= (b1, b2, b3, b12, b13, b23, b123, x0)
T , r = (x1, x2, . . . , x8)

T , and

A =



−1 −1 −1 1 1 1 −1 1
−1 1 −1 −1 1 −1 1 1

1 1 −1 1 −1 −1 −1 1
1 −1 −1 −1 −1 1 1 1
−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 −1 1 −1 1

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 −1 1


. (2.19)

The columns ofA are orthogonal. Premultiplication of (2.18) byAT gives

y = 1

8
ATr (2.20)

so that

b1 = 1

8
(x3478− x1256), b2 = 1

8
(x2367− x1458),

b3 = 1

8
(x5678− x1234), b12 = 1

8
(x1357− x2468),

(2.21)

b13 = 1

8
(x1278− x3456), b23 = 1

8
(x1467− x2358),

b123= 1

8
(x2457− x1368),

where

x jkmn ≡ x j + xk + xm + xn. (2.22)

Substitution of (2.17) in (2.15) gives

|Ä j | = 8b1 · (b2× b3)+ 8

3
{b1 · (b12× b13)+ b12 · (b2× b23)+ b13 · (b23× b3)}. (2.23)

This formula is exact. Before giving a more efficient expression we first give a formula for
the area of a cell face multiplied by its outward unit normal.

Consider the cell face 1234 (cf. Fig. 2.2). In this cell face the coordinate mapping can be
written in the form given by (2.6). The vector normal to the face in a pointx in the positive
ξ3-direction with length equal to the area of the parallelogram spanned by two infinitesimal
displacement vectorsdx(1) anddx(2) is given bydx(1)× dx(2), so that the average normal
vector with length equal to the area of the face 1432 (which we call the cell face vector) is
given by

s1432=
∫

1432

n d0 =
∫

1432

dx(1) × dx(2). (2.24)
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The indices are put in parentheses to emphasize that no components are intended. Introduc-
ing sα defined by (2.10) gives

dx(α) = ∂x
∂ξα

dξα (no summation), (2.25)

with

∂x
∂ξ1
= c1+ d12s

2,
∂x
∂ξ2
= c2+ d21s

1, (2.26)

whered12 andd21 are defined by (2.13). Substitution in (2.24) gives

s1432= 1

4
1ξ11ξ2

1∫
−1

1∫
−1

∂x
∂ξ1
× ∂x
∂ξ2

ds1 ds2 = 1ξ11ξ2c1× c2. (2.27)

The vectorsc1 andc2 are easily determined as follows. The transformation (2.6) can be
rewritten as

x = x0+ 1

2
1ξ1c1s1+ 1

2
1ξ2c2s2+ 1

4
1ξ11ξ2c12s

1s2. (2.28)

Requiringx= xm,m= 1, 2, 3, 4, gives a system of equations that is easily solved in the
same way as (2.18). The result is

c1 = 1

21ξ1
(x34− x12), c2 = 1

21ξ2
(x23− x14), (2.29)

wherex jm≡ x j + xm. Usinga× a= 0 this gives the efficient form

s1432= 1

2
(x4− x2)× (x3− x1), (2.30)

which is identical to the formula for a plane quadrilateral. This equivalence holds only for
doubly ruled surfaces with straight edges. The general formula for a cell face vector is

smnpq= 1

2
(xn − xq)× (xp − xm) (2.31)

assuming the cell vertices are numbered such that the diagonals arempandnq and that the
vector has a positive component in a direction of increasingξα (cf. Fig. 2.2).

It may be shown that

smnpq//n0, (2.32)

with n0 the normal in the cell face centerx0. It is easily seen from (2.6) that

x0 = 1

4
(xm + xn + xp + xq). (2.33)
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Let 0 j be the surface of the cellÄ j . Since0 j is closed we must have∫
0 j

n d0 = 0, (2.34)

with n the unit outward normal. This is called the geometric identity. For uniform flow to
be an exact solution of discretization schemes it is necessary that the geometric identity is
satisfied exactly. Since our cell faces are smoothn is defined unambiguously, and it is easily
shown that ∫

0 j

n d0 =
∑
0 j

smnpq= 0, (2.35)

where summation takes place over the cell faces constituting0 j . We see that the geometric
identity is satisfied.

We can now write down a more economical formula for the cell volume. The cell face
vectors are needed in the discretization. It would be nice if they could be reused to compute
cell face volumes. It would not be unexpected if the volume is related to face area times
face distance. The vector 2bα (defined in (2.21)) connects face centers. We rewrite (2.23)
as

|Ä j | = 8

3
{b1 · (b2× b3+ b12× b13)+ b2 · (b3× b1+ b23× b12)

+ b3 · (b1× b2+ b13× b23)}. (2.36)

After some manipulation we find

b2× b3 = 1

32
(x23× x67+ x67× x58+ x14× x23+ x58× x14), (2.37)

and

b12× b13 = 1

32
(x17× x28+ x35× x17+ x28× x46+ x46× x35), (2.38)

so that

b1 · (b2× b3+ b12× b13) = 1

8
b1 · (s1265+ s4378). (2.39)

Not unexpectedly, this is the average area of two opposing faces times their distance divided
by 8. The other two terms in (2.36) can be handled in the same way, resulting in the efficient
formula

|Ä j | = 1

3
{b1 · (s1265+ s4378)+ b2 · (s1584+ s2673)+ b3 · (s1432+ s8765)}. (2.40)

Sincesmnpq is needed anyway, as noted before, this is the most efficient formula for the
cell volume. Equation (2.40) consists of parts that can be reused for adjacent volumes. For
example,b1= 1

8(x3478− x1256), andx3478 can be used both inÄ j andÄ j+2e1. The same
holds fors4378, and the other vectors in (2.40) can also be used more than once. We have
not seen (2.40) published elsewhere.
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3. GEOMETRIC QUANTITIES AND THEIR SMOOTHNESS PROPERTIES

For the reasons given in Section 1 we will work in the transformed domainG to derive
a staggered discretization. Physical laws in general coordinates are best formulated in
coordinate-invariant form using tensor analysis. As a preparation for this we introduce a few
fundamental geometric quantities related to the coordinate mappingx= x(ξ) introduced in
Section 2, and take a careful look at their smoothness properties. The summation convention
applies.

The covariant base vectorsa(α) are defined by

a(α) = ∂x
∂ξα

or aβ(α) =
∂xβ

∂ξα
, (3.1)

with aβ(α) the Cartesianxβ-component of the vectora(α). Becausex= x(ξ) is piecewise
multilinear,a(α) is piecewise continuous and does not exist everywhere. Fora(α) we have
Eq. (2.12). We will needa(α) only in cell centers and cell face centers. For mnemonic
convenience we indicate these points by subscriptsC, N, R, F , etc., withC for center,N
for north,R for rear,F for front, etc. Hence, with the vertex numbering of Fig. 2.2,

xC = 1

8

8∑
1

xm, xF = 1

4
(x1+ x4+ x5+ x8), (3.2)

etc. It follows from (2.33) thatxN, . . . are in the doubly ruled cell faces. For economy we
need to expressa(α) in the pointsC, N, . . . in terms of cell vertex locationsx1, . . . , x8 in an
efficient way. InC we have in (2.16),s1= s2= s3= 0; in N we have(s1, s2, s3)= (0, 0, 1),
etc. After some algebra we find from (2.12), (2.13), (2.17), and (2.21)

a(1)C = (xE − xW)/1ξ
1, a(2)C = (xR− xF )/1ξ

2, a(3)C = (xN − xS)/1ξ
3,

a(2)W = 1

21ξ2
(x26− x15), a(3)W = 1

21ξ3
(x56− x12),

(3.3)

a(1)F = 1

21ξ1
(x48− x15), a(3)F = 1

21ξ3
(x58− x14),

a(1)S = 1

21ξ1
(x34− x12), a(2)S = 1

21ξ2
(x23− x14),

etc., where we have used the notationxmn= xm+ xn. At a cell faceξα = constanta(α) is
discontinuous and will not be used, buta(β), β 6=α is continuous at such a face.

The contravariant base vectors are defined by

a(α) = ∇ξα or a(α)β =
∂ξα

∂xβ
. (3.4)

We have

a(α) · a(β) = δαβ , (3.5)

with δαβ the Kronecker delta. Solving (3.5) gives

a(α) = 1√
g

(
a(β) × a(γ )

)
, α, β, γ cyclic, (3.6)
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where
√

g is the common designation in tensor analysis for the JacobianJ defined in (2.7),
i.e.,

√
g = a(α) ·

(
a(β) × a(γ )

)
, α, β, γ cyclic. (3.7)

From the smoothness properties ofa(α) it follows that
√

g anda(α) are discontinuous at cell
faces. But

√
ga(α) turns out to be continuous at cell faces of the typeξα = constant. After

some algebra we find that in the cell face centers where
√

gaα is continuous,
√

ga(α) equals
the corresponding cell face vector times a scaling factor:(√

ga(1)
)

W,E
= 1

1ξ21ξ3
sW,E,

(√
ga(2)

)
R,F
= 1

1ξ11ξ3
sR,F ,

(3.8)(√
ga(3)

)
N,S
= 1

1ξ11ξ2
sN,S.

4. STAGGERED REPRESENTATION OF THE VELOCITY FIELD

We want to generalize the classical staggered Marker-and-Cell (MAC) scheme proposed
by Harlow and Welch [33] from Cartesian to general coordinates. This means that we wish
to compute the pressure in cell centers, and normal velocity components in cell face centers.
It follows from (3.8) that the contravariant base vectora(α) is perpendicular to faces of the
typeξα = constant, so at first sight the contravariant velocity componentsUα, defined as

Uα = u · a(α) (4.1)

would seem to be suitable for representing the velocity fieldu. But we saw in the preceding
section thata(α) is discontinuous at cell faces. As a consequence, the use ofUα leads
to bad accuracy on rough grids. But as we saw

√
ga(α) is continuous at cell faces where

ξα = constant. Therefore the following coordinate-invariant staggered representation of the
velocity fieldu will be employed (from now on denotingxE by x j+e1, etc.):

Vα
j+eα =

(√
ga(α) · u)

j+eα
(no summation). (4.2)

From (3.8) it follows that we may also write

Vα
j+eα = (s · u) j+eα

/
1ξβ1ξγ , α, β, γ cyclic. (4.3)

This shows thatVα1ξβ1ξγ approximates the volume flux through the cell face. Therefore
Vα will be called the volume flux components. Comparing (4.2) and (4.3) and using (2.30)
we have the efficient formula (cf. Fig. 2.2)(√

ga(1)
)

j+e1
= 1

2
(x7− x4)× (x8− x9)/1ξ

21ξ3, (4.4)

etc.
We will need to approximateVα andu not only in the cell face centers, but in other points

as well. The general relation betweenVα andu is (using (3.5))

Vα = √ga(α) · u, u = a(α)Vα/
√

g. (4.5)

Finding u requires evaluation ofVα in points other than its proper grid nodes. Because
of lack of smoothness of the geometric quantities, evaluation ofVα in other points than
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its proper grid nodes and evaluation ofu need to be done carefully. A certain tedium is
unavoidable. We impose the following accuracy requirement on formulas for definingVα

in other points than its proper grid nodesx j+eα : constant velocity fieldsu must be invariant
under transformation toVα-representation and back. More precisely, ifu is given, and
Vα

j+eα is computed with (4.5), andVα is determined in another point by some interpolation
recipe, andu is computed in this point with (4.5), then the originalu is recovered exactly in
the special case thatu= constant. Furthermore, in the case of the identity mappingx= ξ,
we will have multilinear interpolation. We have found these accuracy requirements to be
essential for maintaining accuracy on rough grids.

In the cell centersx j we define

Vα
j ≡

1

2

(
Vα

j−eα + Vα
j+eα

)
(no summation), (4.6)

(√
ga(α)

)
j
≡ 1

2

{(√
ga(α)

)
j−eα
+ (√ga(α)

)
j+eα

}
(no summation), (4.7)(

1√
g

a(α)

)
j

≡
{ √

ga(β) ×√ga(γ )√
ga(1) · (√ga(2) ×√ga(3)

)}
j

, α, β, γ cyclic. (4.8)

We show that the above invariance requirement is met. Supposeu= constant. Then (4.6),
(4.5), and (4.7) give

Vα
j =

(√
ga(α)

)
j · u. (4.9)

Recomputingu j from Vα
j gives, using (4.5) and (4.8),

u j =
(

1√
g

a(α)

)
j

(√
ga(α)

)
j u = u, (4.10)

which we wanted to show.
In the cell face centersx j+eα we define forβ 6=α,

Vβ
j+eα ≡

1

4

(
Vβ

j+eβ + Vβ
j−eβ + Vβ

j+2eα+eβ + Vβ
j+2eα−eβ

)
, (4.11)

(√
ga(β)

)
j+eα
≡ 1

4

{(√
ga(β)

)
j+eβ
+(√ga(β)

)
j−eβ
+(√ga(β)

)
j+2eα+eβ

+(√ga(β)
)

j+2eα−eβ

}
(4.12)

(no summation), and(a(α)/
√

g) j+eα is related to(
√

ga(β)) j+eα by replacingj by j + eα in
(4.8). In a similar way as before it is easily seen that the invariance requirement is satisfied.

In the cell edge centersx j+eα+eβ , β 6=α we define (no summation)

Vα
j+eα+eβ ≡

1

2

(
Vα

j+eα + Vα
j+eα+2eβ

)
,

(√
ga(α)

)
j+eα+eβ

≡ 1

2

{(√
ga(α)

)
j+eα
+ (√ga(α)

)
j+eα+2eβ

}
,

(4.13)

Vβ
j+eα+eβ ≡

1

2

(
Vβ

j+eβ + Vβ
j+2eα+eβ

)
,

(√
ga(β)

)
j+eα+eβ

≡ 1

2

{(√
ga(β)

)
j+eβ
+ (√ga(β)

)
j+2eα+eβ

}
,
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and forγ 6=α, β

Vγ
j+eα+eβ ≡

1

8

(
Vγ

j−eγ + Vγ
j+eγ + Vγ

j−eγ+2eα + Vγ
j+eγ+2eα + Vγ

j−eγ+2eβ

+Vγ
j+eγ+2eβ + Vγ

j−eγ+2eα+2eβ + Vγ
j+eγ+2eα+2eβ

)
,(√

ga(γ )
)

j+eα+eβ
≡ 1

8

{(√
ga(γ )

)
j−eγ
+ (√ga(γ )

)
j+eγ
+ (√ga(γ )

)
j−eγ+2eα

(4.14)

+ (√ga(γ )
)

j+eγ+2eα
+ (√ga(γ )

)
j−eγ+2eβ

+ (√ga(γ )
)

j+eγ+2eβ

+ (√ga(γ )
)

j−eγ+2eα+2eβ
+ (√ga(γ )

)
j+eγ+2eα+2eβ

}
.

As before,(a(γ )/
√

g) j+eα+eβ is related to(
√

ga(γ )) j+eα+eβ by replacingj by j + eα + eβ
in (4.8). Again, it is easily seen that the invariance requirement is satisfied.

Furthermore,u is required at the cell verticesx j+e1+e2+e3. The way to proceed is clear
from the preceding cases. We define(α 6=β, α 6= γ, β 6= γ , no summation)

Vα
j+e1+e2+e3

≡ 1

4

(
Vα

j+eα + Vα
j+eα+2eβ + Vα

j+eα+2eγ + Vα
j+eα+2eβ+2eγ

)
, (4.15)

(√
ga(α)

)
j+e1+e2+e3

≡ 1

4

{(√
ga(α)

)
j+eα
+ (√ga(α)

)
j+eα+2eβ

+ (√ga(α)
)

j+eα+2eγ
+ (√ga(α)

)
j+eα+2eβ+2eγ

}
(4.16)

and (a(α)/
√

g) is related to(
√

ga(α)) in x j+e1+e2+e3 by (4.8) with appropriate grid point
indices.

5. COORDINATE-INVARIANT DISCRETIZATION

OF THE NAVIER–STOKES EQUATIONS

Finite volume integration of the continuity equation divu= 0 overÄ j gives

0 =
∫
Ä j

div u dÄ =
∫
0 j

u · n d0 =
3∑
α=1

(u · s)| j+eα
j−eα

(5.1)

=
3∑
α=1

1ξβ1ξγVα| j+eα
j−eα , α, β, γ cyclic,

using the conventionu| jk = u j − uk. For robustness, the discretization scheme should be
coordinate invariant. This is the case for (5.1), because it contains a contravariant represen-
tation of the velocity field.

A straightforward way to proceed would be to discretize the momentum equations written
in coordinate invariant form, using tensor analysis. However, in this formulation the so-
called Christoffel symbols occur. These involve second derivatives of the mappingx= x(ξ).
Because the mapping is piecewise bilinear, the Christoffel symbols are “infinite” at cell
edges. Approximation of the Christoffel symbols by straightforward finite differences gives
reasonable results on smooth grids only. This is perhaps what has led to a widespread
belief that staggered discretization is inaccurate in general coordinates. In order to avoid
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the difficulty with the Christoffel symbols we first transform only the independent variables,
obtaining a form that is not coordinate-invariant, which is discretized and used as a stepping
stone to arrive at a coordinate-invariant discretization.

The derivative of some quantityϕ transforms according to

∂ϕ

∂xα
= a(β)α

∂ϕ

∂ξβ
. (5.2)

Using the identity

∂

∂ξα

(√
ga(α)

) = 0, (5.3)

this can be rewritten as

∂ϕ

∂xα
= 1√

g

∂

∂ξβ

(√
ga(β)α ϕ

)
. (5.4)

The momentum equations can be written as

∂u
∂t
+ ∂

∂xα
(uαu) = −∇ p+ ∂νe(α)

∂xα
, (5.5)

where

e(α) ≡


∂u1

∂xα + ∂uα

∂x1

∂u2

∂xα + ∂uα

∂x2

∂u3

∂xα + ∂uα

∂x3

 . (5.6)

Applying (5.4), Eq. (5.5) can be rewritten as

N(u, p) ≡ ∂u
∂t
+ 1√

g

∂

∂ξα
(uVα)+∇ p− 1√

g

∂

∂ξα

(√
ga(α)β νe(β)

) = 0. (5.7)

This equation is integrated over the shifted finite volumeÄ j+e1 depicted in Fig. 5.1. Treating
each term successively, we obtain∫

Ä j+e1

∂u
∂t

dÄ = ∣∣Ä j+e1

∣∣ du j+e1

/
dt, (5.8)

FIG. 5.1. Shifted finite volumeÄ j+e1.
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∫
Ä j+e1

1√
g

∂

∂ξα
(uVα) dÄ =

∫
G j+e1

∂

∂ξα
(uVα) dξ1 dξ2 dξ3. (5.9)

We have

I 11 ≡
∫

G j+e1

∂

∂ξ1
(uV1) dξ1 dξ2 dξ3=

ξ2
j2+1/2∫

ξ2
j2−1/2

ξ3
j3+1/2∫

ξ3
j3−1/2

(uV1)| j1+1
j1 dξ2 dξ3, (5.10)

where the fact thatuV1 is continuous inG j+e1 has been used. This integral is approximated
by the midpoint rule:

I 11
∼= 1ξ21ξ3(uV1)| j+2e1

j . (5.11)

This is approximated further by using

V1
j
∼= 1

2

(
V1

j−e1
+ V1

j+e1

)
. (5.12)

Similarly,

I 12 ≡
∫

G j+e1

∂

∂ξ2
(uV2) dξ1 dξ2 dξ3 ∼= 1ξ11ξ3(uV2)| j+e1+e2

j+e1−e2
. (5.13)

This is further approximated using

V2
j+e1+e2

∼= 1

2

(
V2

j+e2
+ V2

j+2e1+e2

)
. (5.14)

Analogously,

I 13 ≡
∫

G j+e1

∂

∂ξ3
(uV3) dξ1 dξ2 dξ3 ∼= 1ξ11ξ2(uV3)| j+e1+e3

j+e1−e3
, (5.15)

(uV3) j+e1+e3
∼= 1

4

(
u j+e1 + u j+e1+2e3

)(
V3

j+e3
+ V3

j+2e1+e3

)
. (5.16)

Integration of the pressure term is done as

I 14 ≡
∫

Ä j+e1

∇ p dÄ ∼= ∇ pj+e1

∣∣Ä j+e1

∣∣, (5.17)

where we have used smoothness of∇ p. The term∇ pj+e1 is expressed in terms of surround-
ing nodal values in the following way. We write, using smoothness of∇ p,

b1 ≡ p| j+2e1
j =

x j+2e1∫
x j

∇ p · dx ∼= ∇ pj+e1 · c(1), c(1) ≡ x| j+2e1
j . (5.18)
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Similarly,

b2 ≡ p| j+2e2
j−2e2
+ p| j+2e1+2e2

j+2e1−2e2
=


x j+2e2∫

x j−2e2

+
x j+2e1+2e2∫

x j+2e1−2e2

∇ p · dx ∼= ∇ pj+e1· c(2), (5.19)

c(2) ≡ x| j+2e2
j−2e2
+ x| j+2e1+2e2

j+2e1−2e2
. (5.20)

Using the third direction we obtain similarly

b3 ≡ p| j+2e3
j−2e3
+ p| j+2e1+2e3

j+2e1−2e3
∼= ∇ pj+e1 · c(3), (5.21)

c(3) ≡ x| j+2e3
j−2e3
+ x| j+2e1+2e3

j+2e1−2e3
. (5.22)

We now have three equations expressing∇ p in terms of surrounding nodal values, without
any assumption about the smoothness of the coordinate mapping. The system is solved for
∇ p by defining

c(α) ≡ c(β) × cγ /C, C ≡ c(1) ·
(
c(2) × c(3)

)
. (5.23)

Then the solution of the above three equations for∇ p is

∂p

∂xα
∼= c(β)α bβ. (5.24)

Integration of the viscous term overÄ j+e1 gives three contributions. The first is

I 15 ≡
∫

G j+e1

∂

∂ξ1

(√
ga(1)β νe(β)

)
dξ1 dξ2 dξ3

=
ξ2

j2+1/2∫
ξ2

j2−1/2

ξ3
j3+1/2∫

ξ3
j3−1/2

(√
ga(1)β νe(β)

)∣∣ j1+1
j1

dξ2 dξ3. (5.25)

In (5.25),
√

ga(1)β is constant. We write

I 15
∼= 1ξ21ξ3

(√
ga(1)β νe(β)

)∣∣ j+2e1

j
. (5.26)

The second contribution is

I 16 ≡
ξ1

j1+1∫
ξ1

j1

ξ3
j3+1/2∫

ξ3
j3−1/2

(√
ga(2)β νe(β)

)∣∣ j2+1/2
j2−1/2 dξ1 dξ3. (5.27)

In (5.27),
√

ga(2) is piecewise constant. We make the following approximation,

I 16
∼= 1ξ11ξ3

(√
ga(2)β νe(β)

)∣∣ j+e1+e2

j+e1−e2
, (5.28)
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where we define

(√
ga(2)

)
j+e1±e2

≡ 1

2

{(√
ga(2)

)
j±e2
+ (√ga(2)

)
j+2e1±e2

}
. (5.29)

The third contribution isI 17, which is handled just likeI 16,

I 17 ≡
ξ1

j1+1∫
ξ1

j1

ξ2
j2+1/2∫

ξ2
j2−1/2

(√
ga(3)β νe(β)

)∣∣ j3+1/2
j3−1/2 dξ1 dξ2

∼= 1ξ11ξ2
(√

ga(3)β νe(β)
)∣∣ j+e1+e3

j+e1−e3
, (5.30)

where

(√
ga(3)

)
j+e1±e3

≡ 1

2

{(√
ga(3)

)
j±e3
+ (√ga(3)

)
j+2e1±e3

}
. (5.31)

In I 15, I 16, andI 17, e(β) has to be approximated, requiring discretizations of derivatives of
u. We start withI 15 and write, using (5.2),(

∂u
∂xβ

)
j

=
(

a(α)β
∂u
∂ξα

)
j

. (5.32)

In a cell-center we are not hampered by nonsmoothness of the mappingx= x(ξ), and the
following straightforward approximation can be used:

(
∂u
∂xβ

)
j

∼=
3∑
α=1

1

1ξα

(
a(α)β
)

j
u| j+eα

j−eα . (5.33)

The same procedure cannot be followed forI 16 and I 17, because we are at a cell edges,
where the geometric quantities are discontinuous. Instead, we proceed in a similar way as
for ∇ p. An approximation for∂uα/∂xβ in x j+e1+e2, for example, is derived by writing (no
summation)

bγ ≡ uα| j+e1+e2+eγ
j+e1+e2−eγ =

x j+e1+e2+eγ∫
x j+e1+e2−eγ

∇uα · dx ∼= ∇uαj+e1+e2
· c(γ ),

(5.34)
c(γ ) ≡ x| j+e1+e2+eγ

j+e1+e2−eγ , γ = 12, 3.

This system of three equations for∇uα is solved in similar manner as the system for∇ p.
We definec(α) by (5.23), takingc(α) from (5.34), and find(

∂uα

∂xβ

)
j+e1+e2

∼= c(γ )β bγ . (5.35)

In c(γ )β values ofu in cell face centers, cell edge centers and cell vertices occur; these are
expanded in terms ofVα by means of (4.5), (4.8), and (4.12)–(4.16).
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The momentum equation (5.7) is integrated also over shifted finite volumesÄ j+e2 and
Ä j+e3 and discretized in a completely similar manner. We may consider the resulting finite
volume discretization of (5.7), briefly denoted as∫

Ä j+eα

N(u, p) dÄ = 0 (5.36)

with the integral approximated in the way indicated above, as semi-discretized evolution
equations foru at the cell face centers (by semi-discretization we mean discretization in
space but not in time). This is not what we want, because we wish to generalize the staggered
scheme of Harlow and Welch [33] from Cartesian to general grids, which implies that we
want evolution equations for the volume flux components at the cell face centers. Using
(4.5), this is achieved by replacing (5.36) by

(√
ga(α)

)
j+eα
·
∫

Ä j+eα

N(u, p) dÄ = 0 (no summation), (5.37)

with the integral approximated in the way described above. This gives for the various terms
in N(u, p) the following results. From (5.8) and (4.5) it follows that

(√
ga(α)

)
j+eα
·
∫

Ä j+eα

∂u
∂t

dÄ = ∣∣Ä j+eα

∣∣ dVα
j+eα

/
dt (no summation), (5.38)

which is precisely what we want. Furthermore.(√
ga(1)

)
j+e1
· I 11
∼= 1ξ21ξ3

(√
ga(1)

)
j+e1
· (uV1)| j+2e1

j . (5.39)

The equivalent of the second order central scheme for the convection term is obtained if we
expressu in terms ofVα in the way described in Section 4. The first order upwind scheme
is obtained if we shift the flux in the usual way; for example, ifV1

j > 0 then(uV1) j is
replaced by(uV1) j−e1. After this shiftu is expressed in terms ofVα. A way to implement
second order upwind-biased flux-limited schemes is to substitute in (5.39) componentwise,
assumingV1

j > 0, in the notation of [79]:

u j = u j−e1 +
1

2
ψ(r j )

(
u j+e1 − u j−e1

)
,

r j =
(
u j−e1 − u j−3e1

)/(
u j+e1 − u j−e1

)
.

When solving, the nonlinear term can lag behind, so that defect correction is applied to the
first order upwind scheme, which is common practice for flux-limited schemes.

There is no need to discuss the remaining terms. In this way a coordinate-invariant dis-
cretization is obtained, that in the case of the identity mappingx= ξ is reduced to the
classical Cartesian staggered discretization of Harlow and Welch [33]. Furthermore, the
discretization error is zero foru and∇ p constant, regardless of roughness and nonorthog-
onality of the grid. It would be too tedious to show this here, but verification by numerical
experiment is easy.
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One may wonder how it is possible that a coordinate-invariant discretization has been ob-
tained without encountering Christoffel symbols. This may, to a certain extent, be elucidated
as follows. The Christoffel symbols are defined by{

α

βγ

}
≡ a(α) · ∂a(β)

∂ξγ
. (5.40)

In (5.39), for example, ifu is expressed in terms ofVα, products ofa(α) in one point and
a(β) in neighbouring points are hidden, similar to what one would get by discretizing (5.40)
(assuming differentiability ofa(β)). Furthermore, contra- and covariant base vectors are
implicitly present inI 15, becausec(α) in (5.18), (5.20), and (5.22) is related toa(α), and
c(α) in (5.23) toa(α). Another way of looking at our circumvention of Christoffel symbols
is to note that finite volume integration precedes transformation to invariant form, so that
integrals of the Christoffel symbols are required, removing the derivative in (5.40).

The spatial discretization is completed by implementing the boundary conditions. This
presents no particular problem and will not be discussed here.

6. SOLUTION METHODS

Putting all unknowsVα
j+eα (no summation) in some order in an algebraic vectoru and all

unknownspj in an algebraic vectorp, the semi-discretized incompressible Navier–Stokes
equations go over in a differential-algebraic system of the structure

du

dt
+ N(u)+ Gp= f (t),

(6.1)
Du = g(t).

HereN is a nonlinear algebraic operator arising from the discretization of the inertia and
viscous terms,G and D are linear algebraic operators corresponding to the gradient and
divergence operators, andf andg are known terms, arising from the boundary conditions.

Temporal discretization methods carry over directly from the Cartesian to the general
coordinates case and result in systems of the following general form, assuming a constant
timestepτ and a superscriptn to indicate time leveltn= nτ ,

A(un)+ τGpn−1/2 = r n,
(6.2)

Dun = g(tn),

wherer n is known from previous time steps and the boundary conditions. For explicit
methods, the nonlinear algebraic operatorA is the identity. For example, the second order
Adams–Bashforth method applied to (6.1) gives

un− un−1+ 1

2
τ {3N(un−1)− N(un−2)+G(3pn−1− pn−2)} = 1

2
τ {3 f (tn−1)− f (tn−2)},

(6.3)
Dun = g(tn).

In order to avoid an overdetermined system,un andpn−1 must be determined simultaneously.
The solution forun is not affected if we definepn−1/2= 3

2 pn−1− 1
2 pn−2, which results in a
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system of the form (6.2). The formulation (6.2) brings out more clearly than (6.3) the fact
that the pressure acts as a Lagrangian multiplier guaranteeing satisfaction of the continuity
equation. As a second example, application of theθ -method to (6.1) gives

un − un−1+ θτN(un)+ (1− θ)τN(un−1)+ τGpn−1/2 = θ f (tn)+ (1− θ) f (tn−1)

(6.4)
Dun = g(tn)

which is again of the form (6.2).
For computing time-dependent solutions of (6.2), pressure correction is the method of

choice. With the pressure-correction method, (6.2) is not solved as it stands, but first a
predictionu∗ is made that does not satisfy the continuity equation. Then a correction is
computed involving the pressure such that continuity is satisfied. The advantage of this is
thatun and pn−1/2 are solved for separately. The pressure correction method is given by

A(u∗)+ τGpn−3/2 = r n (6.5)

un − u∗ + τG(pn−1/2− pn−3/2) = 0 (6.6)

Dun = g(tn). (6.7)

Equation (6.5) more or less amounts to solving discretized convection-diffusion equations
for the predicted velocity components. Next,pn−1/2 is computed by applyingD to (6.6)
and using (6.7), resulting in

DGδp = 1

τ
(Du∗ − g(tn)), pn−1/2 = pn−3/2+ δp (6.8)

After δp has been computed,un follows from (6.6). BecauseDG is a discrete Laplacian,
(6.8) is frequently called the pressure Poisson equation. Note that no boundary conditions
need to be invoked forδp, which is fortunate, because no such conditions are given in
general. The boundary conditions have already been incorporated inD, G, g, andr n; the
operatorDG works exclusively on pressure values in grid points in the interior of the
domain. The issue of boundary conditions for the pressure Poisson equation (which does
not arise with the approach followed here) is discussed extensively in [26–28].

Even if the method is explicit(A= I ), we still have to solve an implicit system forδp.
This is a consequence of the differential-algebraic nature of (6.1). By elimination ofu∗ it is
easily seen that in the explicit case the pressure correction method (6.5)–(6.7) is equivalent
to (6.2), and this remains true ifpn−3/2 is neglected in (6.5) and (6.6). But in the implicit
case this does not hold, and inclusion of a sufficiently accurate first guess forpn−1/2 in
(6.5), such aspn−3/2, seems to be necessary to obtain full temporal accuracy forun. This
may make it necessary to compute the initial pressure at the starting step(n= 1), to be
substituted forp−1/2. This may be done as follows. Application ofD to (6.1) gives

dg(t)

dt
+ DN(u(t))+ DGp(t) = D f (t). (6.9)

After puttingt = 0 and solvingp(0) from (6.9), we putp−1/2= p(0) in (6.5).
In the Cartesian case, convergence of the method is studied theoretically in [36] and

references quoted there. The pressure correction method has been formulated and studied
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in [3, 13–15, 22, 33, 36, 6, 81, 83]. Indications are that the temporal accuracy ofun is the
same as the order of accuracy of the underlying time stepping method, but that the accuracy
of pn−1/2 is O(τ ), irrespective of the temporal discretization used. If one desires, a pressure
field with improved accuracy can be obtained afterun has been computed, by using (6.9)
for t = tn to find pn with the same order of temporal accuracy asun.

For stability of (6.5)–(6.7) it seems necessary that (6.5) is stable. Since (6.5) is very
close to a system of convection-diffusion equations forV1 andV2, application of Fourier
analysis to show von Neumann stability is relatively easy [91]. It is conjectured, supported
by numerical evidence, that stability of (6.5) is sufficient for stability of (6.5)–(6.7).

In the explicit case, on orthogonal grids, the bulk of the computing time goes to solving
δp from (6.8), so it pays to do this efficiently. On uniform grids in orthogonal coordinates,
fast Poisson solvers based on fast Fourier transformation and/or cyclic reduction are in
widespread use. A survey of these methods is given in [78]. On general grids these methods
are not applicable. In general, the matrix of (6.8) is not symmetric, and when the coor-
dinates are strongly non-orthogonal it is not anM-matrix. But multigrid [31, 89, 97] and
preconditioned Krylov subspace methods [70, 86, 87, 97] work fine. For robustness, the
smoother or preconditioner must be able to cope with high cell aspect ratios. This, and
the influence of mixed derivatives is modeled by the rotated anisotropic diffusion equation
of Chapter 7 in [89], where efficient and robust smoothers for this problem are identified;
these may also be expected to be effective preconditioners for Krylov subspace methods.
These methods are of line relaxation or incomplete LU type, namely damped alternat-
ing Jacobi or zebra relaxation, alternating line Gauss–Seidel, and various ILU variants;
for details see [89]. We found that on general grids the discretization that we presented
is sufficiently complicated to make the work required to update the matrixA in (6.5)
not neglible, though still smaller than the work required to compute the pressure correc-
tion.

In the implicit case, (6.5) also has to be solved iteratively. The nonlinear character is taken
care of by some outer iteration or a prediction of nonlinear coefficients by extrapolation
from previous time levels, so for the present discussionA is assumed linear. With central
discretization of convection and a practical Reynolds numberA will not be anM-matrix,
but forτ small enough the main diagonal is enhanced sufficiently by the time derivate to put
iterative methods in business. Otherwise, the system may be preconditioned by a sufficiently
upwind-biased scheme (defect correction). In nonorthogonal coordinates mixed derivatives
can be significant, which causes ADI and other fractional step methods to loose much of
their lustre. Again, Krylov subspace and multigrid methods may be used. The convection-
diffusion equation can serve as a testbed for identifying robust and efficient smoothers and
preconditioners. In [89] the same methods as before are found to be eligible. Navier–Stokes
applications are shown in [89, 86, 87, 97].

7. APPLICATIONS AND EXTENSIONS

In order to illustrate that the generalized coordinates staggered discretization described
before is at least as accurate as the discretization methods that are mostly used at present
in codes to compute Navier–Stokes solutions in complicated domains, namely colocated
finite volume methods using Rhie–Chow interpolation [61] and finite element methods, we
approximate a simple exact solution on a rough grid. We start with a simple two-dimensional
example, so that the coordinate mapping satisfiesxα = xα(ξ1, ξ2) (α= 1, 2), x3= ξ3. The
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FIG. 7.1. Grid for Poiseuille flow.

exact solution is Poiseuille flow:

u1 = x2(1− x2), u2 = 0, p = −2Re−1x1, Re= 1.

The grid, shown in Fig. 7.1, is chosen rough deliberately. Figures 7.2–7.4 give stream-lines
and isobars for the staggered discretization, a finite-element code usingQ1− P0 elements
(quadrilaterals with bilinear basis functions for the velocity and constant basis functions
for the pressure) and a commercial code using colocated discretization with Rhie–Chow
interpolation. Figure 7.5 gives an even wilder grid, meant to investigate the effect of sudden
refinement and derefinement. Results are shown in Figs. 7.6 and 7.7. We do not have results
for the colocated code for this case. The streamlines should be straight and the isobars
straight and equally spaced. Clearly, the staggered discretization is more accurate than the
other two methods. Figure 7.8 shows a grid that is also distorted in theξ3-direction. The
exact solution is chosen as before. Figure 7.9 shows the intersections (isobars) of constant
pressure surfaces with several planesx2= constant andx3= constant (thex1-axis points
in the longitudinal direction). These lines should be straight and uniformly spaced. We see
that this is the case to a satisfactory extent, given the extreme roughness of the grid.

This illustrates that staggered schemes are not inherently inaccurate on general grids.
On the contrary, they can be quite accurate, provided the smoothness properties of the
boundary-fitted coordinate mapping are carefully taken into account. This can be done in
the way described above. Examples involving physically more interesting flows are referred

FIG. 7.2. Streamlines and isobars for staggered discretization.
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FIG. 7.3. Streamlines and isobars for finite element method.

to below. Satisfactory results were obtained on more or less smooth grids using an earlier
version of our code making explicit use of Christoffel symbols. With the version described
above results are at least as good.

Extension of the present approach to the case of nonstationary compressible flow is de-
scribed in [5], resulting in a unified method for compressible and incompressible flow, with
approximately Mach-independent accuracy and efficiency. For the development of such
Mach-uniform methods, staggered schemes have an advantage over colocated schemes,
that we will now briefly discuss. The disadvantage of greater difficulty in handling geomet-
rically complicated domains remains, of course, a difficulty that is not unsurmountable, as
we have shown above. The limitM ↓ 0 of the Euler and Navier–Stokes equations is singular
[42, 47]. Classical methods to compute compressible flows break down asM ↓ 0. Measures
can be taken to decrease to a certain extent the lowest value ofM for which reasonable results
can be obtained [11, 30, 82, 84] (untilM ∼= 0.1), but these measures usually falsify tran-
sient behaviour and are therefore limited to stationary flows, andM = 0 cannot be reached. A

FIG. 7.4. Streamlines and isobars for colocated discretization.



FIG. 7.5. Grid for Poiseuille flow.

FIG. 7.6. Streamlines and isobars for staggered discretization.

FIG. 7.7. Streamlines and isobars for finite element method.

FIG. 7.8. Three-dimensional grid for Poiseuille flow.

356
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FIG. 7.9. Top to bottom, isobars atx2= 1/4, 1/2, 3/4 andx3= 1/4, 1/2, 3/4.
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method that tends to an established method for incompressible flows asM ↓ 0 obviously
does not break down for small Mach numbers. A way to obtain methods with Mach-uniform
accuracy and efficiency is therefore to generalize methods designed for the incompressible
case to the compressible case. For the stationary Navier–Stokes equations this has been
done with a colocated scheme in [18] and for a staggered scheme in [32, 39, 73–75].
Colocated schemes add, either implicitly or explicitly, an artificial regularizing term to the
mass conservation equation; for an explicit expression of this term generated by the Rhie–
Chow velocity interpolation method [61], see [51]. Introduction of weak compressibility
entails a small physical modification of the mass conservation equation, which may be
dominated by the artificial regularizing term. This is not the case for staggered schemes,
which seems to be an advantage, especially for nonstationary flows.

Extension to turbulent flow is straightforward. Two-equation turbulence models, such
as thek− ε and k−ω models, can be discretized on general staggered grids using the
principles outlined before [98–103]. Turbulence quantities such ask, ε, andω are located in
the same grid points as the pressure. For higher order accuracy while maintaining positivity
of k andε, higher order upwind biased schemes with flux limiting can be extended to general
staggered grids [99, 103].

8. CONCLUDING REMARKS

We have shown how the classical staggered scheme for the incompressible Navier–
Stokes equations can be generalized from Cartesian to coordinate invariant form on general
strongly nonuniform and nonorthogonal grids in such a way that the accuracy is at least
as good as a typical finite element method and a typical colocated scheme using Rhie–
Chow velocity interpolation. The accuracy is maintained when two-equation turbulence
modeling is included. Extension of the usual solution techniques to general structured grids
is straightforward. Because on staggered grids no artificial regularization is needed for the
mass conservation equation, accurate extension to weakly compressible instationary flows
is possible. The resulting scheme works satisfactorily fromM = 0 to M > 1.
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